Understanding Employment Persistence*

Mike Elsby

University of Edinburgh

Ryan Michaels
University of Rochester

David Ratner

Federal Reserve Board

[Preliminary and incomplete]

CIGS Conference, Tokyo, May 2014

Macroeconomic employment inertia

Employment is a lagging indicator (Okun).

Question

What are the microeconomic origins of persistent aggregate employment dynamics?

Microeconomic employment inertia Inaction punctured by bursts of adjustment.

Are these linked?

Distribution of employment growth, QCEW 1992-2013

Canonical approach

- Specify a model of lumpy adjustment costs.
- Match moments of the microdata.
- Draw out aggregate implications.
- Answer can depend on structure of model, moments matched etc.

Our approach / Contributions / Roadmap

1. Diagnostic.

- Straightforward assessment of aggregate implications of popular class of theories; no estimation required.

2. Empirical application.

- Rich U.S. microdata on establishment employment dynamics cast doubt on role of canonical models.

3. Novel micro fact.

- Suggests the importance of replacement hiring.

4. Replacement hiring may matter for macro dynamics.

- Vacancy chains as an amplification mechanism.

I. AGGREGATION

Aggregation

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Inflow}(n) \\
& -\operatorname{Outflow}(n)
\end{aligned}
$$

Aggregation

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Inflow}(n) \\
& -\operatorname{Outflow}(n)
\end{aligned}
$$

Two themes

1. Adj. costs leave clear imprint on these flows.
2. We can measure these flows in microdata.

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Pr}(\text { adjust to } n) h^{*}(n) \\
& -\operatorname{Outflow}(n) \prod_{\substack{\text { Density } \\
\text { implied fall } \\
\text { firms adjust }}}
\end{aligned}
$$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Pr}(\text { adjust to } n) h^{*}(n) \\
& -\operatorname{Pr}(\text { adjust from } n) h_{-1}(n)
\end{aligned}
$$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Pr}(\text { adjust to } n) h^{*}(n) \\
& -\operatorname{Pr}(\text { adjust from } n) h_{-1}(n)
\end{aligned}
$$

An $S s$ labor demand policy.

$\operatorname{Pr}($ adjust from $m)=1-H^{*}[U(m)]+H^{*}[L(m)]$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Pr}(\text { adjust to } n) h^{*}(n) \\
& -\operatorname{Pr}(\text { adjust from } n) h_{-1}(n)
\end{aligned}
$$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Pr}(\text { adjust to } n) h^{*}(n) \\
& -\operatorname{Pr}(\text { adjust from } n) h_{-1}(n)
\end{aligned}
$$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\begin{aligned}
\Delta h(n) & =\operatorname{Pr}(\text { adjust to } n) h^{*}(n) \\
& -\operatorname{Pr}(\text { adjust from } n) h_{-1}(n)
\end{aligned}
$$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\Delta h(n)=-\phi(n)\left[h_{-1}(n)-\hat{h}(n)\right]
$$

$\hat{h}(n)$ is a flow steady state that sets $\Delta h(n)=0$:

$$
\hat{h}(n)=\frac{\tau(n)}{\phi(n)} h^{*}(n)
$$

Leading example: fixed costs

The density of employment across firms $h(n)$ evolves according to:

$$
\Delta h(n)=-\phi(n)\left[h_{-1}(n)-\hat{h}(n)\right]
$$

$\hat{h}(n)$ is a flow steady state that sets $\Delta h(n)=0$:

$$
\hat{h}(n)=\frac{\tau(n)}{\phi(n)} h^{*}(n)
$$

Claim:
This is useful

II. A DIAGNOSTIC

Flow steady state as a diagnostic

 Aggregate employment implied by $\hat{h}(n)$ informs path of frictionless aggregate employment:$$
\hat{h}(n)=\frac{\tau(n)}{\phi(n)} h^{*}(n)
$$

Flow steady state as a diagnostic

 Aggregate employment implied by $\hat{h}(n)$ informs path of frictionless aggregate employment:$$
\widehat{N}=\int n \hat{h}(n) d n=\int n \frac{\tau(n)}{\phi(n)} h^{*}(n) d n
$$

Flow steady state as a diagnostic

 Aggregate employment implied by $\hat{h}(n)$ informs path of frictionless aggregate employment:$$
\widehat{N}=\int n \hat{h}(n) d n=\mathbb{E}_{h^{*}}\left[n \cdot \frac{\tau(n)}{\phi(n)}\right]
$$

Flow steady state as a diagnostic

 Aggregate employment implied by $\hat{h}(n)$ informs path of frictionless aggregate employment:$$
\begin{gathered}
\widehat{N}=\int n \hat{h}(n) d n=\mathbb{E}_{h^{*}}\left[n \cdot \frac{\tau(n)}{\phi(n)}\right] \\
=N^{*}+\operatorname{cov}^{*}\left(n, \frac{\tau(n)}{\phi(n)}\right)
\end{gathered}
$$

Intuition I. \widehat{N} as a bound for \boldsymbol{N}^{*}

$$
\widehat{N}=N^{*}+\operatorname{cov}^{*}\left(n, \frac{\tau(n)}{\phi(n)}\right)
$$

E.g. positive aggregate shock \Rightarrow

$$
N^{*} \uparrow \quad \text { and } \quad \operatorname{cov}^{*}\left(n, \frac{\tau(n)}{\phi(n)}\right) \uparrow
$$

More likely to adjust to vs. from higher n s.

Intuition I. \widehat{N} as a bound for \boldsymbol{N}^{*}

$$
\widehat{N}=N^{*}+\operatorname{cov}^{*}\left(n, \frac{\tau(n)}{\phi(n)}\right)
$$

E.g. negative aggregate shock \Rightarrow

$$
N^{*} \downarrow \quad \text { and } \quad \operatorname{cov}^{*}\left(n, \frac{\tau(n)}{\phi(n)}\right) \downarrow
$$

Less likely to adjust to vs. from higher $n \mathrm{~s}$.

Intuition II. Jump dynamics of \widehat{N}

$$
\widehat{N}=N^{*}+\operatorname{cov}^{*}\left(n, \frac{\tau(n)}{\phi(n)}\right)
$$

- $\tau(n)$ and $\phi(n)$ determined by policy function.
- Policy function forward looking \Rightarrow jump.
- \widehat{N} will inherit jump dynamics.
- We think this logic generalizes to kinked costs.

Some quantitative examples

1. Pure fixed adjustment cost.

- To see daylight b/w series, consider "large" C.
$-\operatorname{Pr}($ inaction $)=0.65$ per quarter. [Data suggest 0.5.]

2. Fixed and kinked adjustment costs.

- Fix inaction rate and vary size of kinked cost.
$-c / w \in\{0.08,0.16\}$. [Bloom (2009) finds 0.08.]
- All are for fixed aggregate state (i.e. wages).

Pure fixed adjustment cost, $\operatorname{Pr}($ inaction $)=0.65$

Fixed and small kinked costs, $\operatorname{Pr}($ inaction $)=0.65$

Fixed and small kinked costs, $\operatorname{Pr}($ inaction $)=0.8$

Fixed and large kinked costs, $\operatorname{Pr}($ inaction $)=0.65$

Fixed and large kinked costs, $\operatorname{Pr}($ inaction $)=0.8$

III. EMPIRICAL APPLICATION

Empirical approach

Aggregation result has clear empirical content: We can measure much of the law of motion:

\Rightarrow Can estimate $\hat{h}(n)=\frac{\Delta h(n)}{\operatorname{Pr}(\text { (adjust from } n)}+h_{-1}(n)$.

Data

- Quarterly Census of Employment and Wages.
- Census of all Ul-covered employment
$-\approx 98 \%$ of U.S. employment.
- Establishment microdata onsite at BLS.
- Excludes MA, NH, NY, WI, FL, IL, MS, OR, WY, PA.
- Restrict analysis to continuing, private estabs. [I.e. drop births and deaths.]
- Broad coverage \Rightarrow natural establishment panel.

Log aggregate employment

Log aggregate employment

Actual vs. steady-state log aggregate employment, QCEW 1992-2013

Log aggregate employment

Log aggregate employment

Actual vs. steady-state log aggregate employment, QCEW 1992-2013

Data

Model (large kinked cost)

IV. SOME NEW FACTS

Back to the data: $\mathbf{3}$ facts

1. Inaction over net changes.

- Even though quit rate is 6% per quarter (JOLTS).

2. Slow decay of inaction by frequency.

- Much slower than exponential decay.

3. Inaction correlated w/ job-to-job transitions.

- At both aggregate and industry levels.

Distribution of employment growth, QCEW 1992-2013

Share of establishments

Distribution of employment growth, QCEW 1992-2013

$$
\operatorname{Pr}\left(n_{t}=n_{t+\tau}\right), \text { QCEW average over 1992-2013 }
$$

Slow decay of inaction

- Not captured in any of the baseline models.
- Decay in model is essentially exponential.

Frequency τ in quarters	Data	Pure fixed cost	$\operatorname{Pr}\left(n_{t}=n_{t+\tau}\right)$ + small kink	+ larger kink
1	0.53	0.64	0.67	0.65
2	0.46	0.41	0.45	0.43
3	0.43	0.27	0.30	0.28
4	0.41	0.18	0.2	0.18

Slow decay of inaction

- Not an artefact of seasonality.
- Decay is slow between as well as within years.
- Similar decay in high vs. low seasonal industries.

Frequency τ in	$\operatorname{Pr}\left(n_{t}=n_{t+\tau}\right) / \operatorname{Pr}\left(n_{t}=n_{t+1}\right)$	
quarters	High seasonal	Low seasonal
1	1	1
2	0.82	0.84
3	0.74	0.75
4	0.70	0.69

Aggregate inaction and job-to-job transitions, QCEW and CPS

Inaction rate (quarterly)

Industry-level inaction and job-to-job transitions, QCEW and CPS

V. REPLACEMENT HIRING

Lessons from the data

- Firms appear to have reference levels of employment to which they return routinely.
- A lot of adjustment seen in the data is driven by high-frequency returns to reference level.
- Negative correlation w/ E-to- E^{\prime} rate suggests role of replacement hiring.
- Could this matter?

A prototype model of replacement hiring

$\Pi\left(n_{-1}, k_{-1}, x\right) \equiv$
$\max \{p x F(n)-w n \quad$ Revenue - costs
n

$$
\begin{array}{ll}
-c^{+}\left[n-(1-\delta) n_{-1}\right]^{+} & \text {Gross hiring } \\
-C \mathbb{1}_{\Delta k \neq 0} & \text { Capacity adj. } \\
-c^{-}[k-n]^{-} & \text {Slack capacity } \\
+ \text { Forward value }\} &
\end{array}
$$

s.t. $\Delta k=\left[n-k_{-1}\right]^{+}-\left[n-k_{-1}\right] \mathbb{1}_{n<(1-\delta) n_{-1}}$

A prototype model of replacement hiring

$\Pi\left(n_{-1}, k_{-1}, x\right) \equiv$
$\max \{p x F(n)-w n$
n

$$
\begin{aligned}
& -c^{+}\left[n-(1-\delta) n_{-1}\right]^{+} \\
& -C \mathbb{1}_{\Delta k \neq 0} \\
& -c^{-}[k-n]^{-} \\
& + \text {Forward value }\}
\end{aligned}
$$

Revenue - costs

Gross hiring
Capacity adj.
Slack capacity
s.t. $\Delta k=\left[n-k_{-1}\right]^{+}-\left[n-k_{-1}\right] \mathbb{1}_{n<(1-\delta) n_{-1}}$

A prototype model of replacement hiring

$\Pi\left(n_{-1}, k_{-1}, x\right) \equiv$ Exogenous (for now) $\max \{p x F(n)-w n \quad$ Revenue - costs n

$$
\begin{aligned}
& -c^{+}\left[n-(1-\delta) n_{-1}\right]^{+} \\
& -C \mathbb{1}_{\Delta k \neq 0} \\
& -c^{-}[k-n]^{-} \\
& + \text {Forward value }\}
\end{aligned}
$$

Gross hiring
Capacity adj.
Slack capacity
s.t. $\Delta k=\left[n-k_{-1}\right]^{+}-\left[n-k_{-1}\right] \mathbb{1}_{n<(1-\delta) n_{-1}}$

Saves a control variable

A prototype model of replacement hiring

Model does better on slow decay of inaction

Frequency τ in $\quad \operatorname{Pr}\left(n_{t}=n_{t+\tau}\right) / \operatorname{Pr}\left(n_{t}=n_{t+1}\right)$
quarters
Model
Data

1	1	1
2	0.86	0.87
3	0.76	0.81
4	0.69	0.77

Why replacement hiring might matter

Search models \Rightarrow gross per-worker hiring cost:

$$
c^{+}=\frac{\text { vacancy cost }}{\text { vacancy filling rate }}=\frac{\gamma}{q(V)}
$$

1. More V s reduce q, hiring cost c^{+}rises. \rightarrow Negative feedback.

Why replacement hiring might matter

Search models \Rightarrow gross per-worker hiring cost:

$$
c^{+}=\frac{\text { vacancy cost }}{\text { vacancy filling rate }}=\frac{\gamma}{q(V)}
$$

1. More V s reduce q, hiring cost c^{+}rises. \rightarrow Negative feedback.
2. More V s raise δ, post further V s to replace. \rightarrow Positive feedback: Vacancy chains...

A prototype model of replacement hiring

$\Pi\left(n_{-1}, k_{-1}, x\right) \equiv$
$\max \{p x F(n)-w n \quad$ Revenue - costs
n

$$
\begin{array}{ll}
-c^{+}\left[n-(1-\delta) n_{-1}\right]^{+} & \text {Gross hiring } \\
-C \mathbb{1}_{\Delta k \neq 0} & \text { Capacity adj. } \\
-c^{-}[k-n]^{-} & \text {Slack capacity } \\
+ \text { Forward value }\} &
\end{array}
$$

s.t. $\Delta k=\left[n-k_{-1}\right]^{+}-\left[n-k_{-1}\right] \mathbb{1}_{n<(1-\delta) n_{-1}}$

A prototype model of replacement hiring

$\Pi\left(n_{-1}, k_{-1}, x ; V\right) \equiv$
$\max \{p x F(n)-w n \quad$ Revenue - costs

$$
\begin{array}{ll}
-\frac{\gamma}{q(V)}\left[n-(1-\delta(V)) n_{-1}\right]^{+} & \text {Gross hiring } \\
-C \mathbb{1}_{\Delta k \neq 0} & \text { Capacity adj. } \\
-c^{-}[k-n]^{-} & \text {Slack capacity } \\
+ \text { Forward value }\} &
\end{array}
$$

s.t. $\Delta k=\left[n-k_{-1}\right]^{+}-\left[n-k_{-1}\right] \mathbb{1}_{n<(1-\delta) n_{-1}}$

A prototype model of replacement hiring

$\Pi\left(n_{-1}, k_{-1}, x ; V\right) \equiv$ $\max \{p x F(n)-w n$ n

$$
\begin{array}{ll}
-\frac{\gamma}{q(V)}\left[n-(1-\delta(V)) n_{-1}\right]^{+} & \text {Gross hiring } \\
-C \mathbb{1}_{\Delta k \neq 0} & \text { Capacity adj. } \\
-c^{-}[k-n]^{-} & \text {Slack capacity } \\
+ \text { Forward value }\} & \text {...and slack is costly. }
\end{array}
$$

Revenue - costs

s.t. $\Delta k=\left[n-k_{-1}\right]^{+}-\left[n-k_{-1}\right] \mathbb{1}_{n<(1-\delta) n_{-1}}$

Without replacement hiring $\left(c^{-}=0\right)$

With replacement hiring $\left(c^{-}>0\right)$

Amplification: Vacancy chains

A conjecture

- Absent vacancy chains, replacement hiring model just an exotic adj. cost model.
\rightarrow Suspect \widehat{N} diagnostic would remain jump.
- But, vacancy chains add another layer to the aggregate dynamics.
\rightarrow Frictions spillover and multiply across firms.
\rightarrow If process of poaching takes time \Rightarrow persistence.
- Much more work to do: chiefly wage setting!

Summary of contributions

- Toward a diagnostic for the aggregate effects of popular class of adjustment frictions.
- Empirical implementation suggests models unable to explain employment persistence.
- Microdata instead suggest pervasive replacement hiring.
- Prototype model suggests aggregate dynamics could look very different in this case.

Extra slides

Canonical model

Idiosyncratic

Fixed adj. cost

Lemma (Gertler and Leahy, 2008)

The optimal labor demand policy approximately takes the Ss form,

$$
n=\left\{\begin{array}{ccc}
n^{*} & \text { if } & n^{*} \notin\left[L\left(n_{-1}\right), U\left(n_{-1}\right)\right] \\
n_{-1} & \text { if } & n^{*} \in\left[L\left(n_{-1}\right), U\left(n_{-1}\right)\right]
\end{array}\right.
$$

where

- $n^{*}(x, p)$ coincides with frictionless analogue;
- $L\left(n_{-1}\right)<U\left(n_{-1}\right)$ are time-invariant.

Intuition

- $\underline{n}^{*}(x, p)$ coincides with frictionless analogue
- Envelope Theorem: Prob. of inaction $=O(\sqrt{C})$.
- Optimality: Return to inaction $\in[0, C]=O(C)$.
- Probability \times Return $=O\left(C^{3 / 2}\right) \approx 0$.
- $L\left(n_{-1}\right)<U\left(n_{-1}\right)$ are time-invariant
$-n^{*}$ sufficient statistic for shocks to $\{x, p, w\}$.
$-L\left(n_{-1}\right)<U\left(n_{-1}\right)$ reflect curvature of $F(n)$.

Proof of bounding result

Myopia is approximately optimal (Gertler/Leahy 2008):
$\mathbb{E}\left[\Pi^{\prime}\right]=\mathbb{E}\left[\Pi_{\text {adjust }}^{\prime}-C\right]$
$+\operatorname{Pr}($ inaction $) \mathbb{E}\left[\Pi_{\text {inaction }}^{\prime}-\Pi_{\text {adjust }}^{\prime}+C\right]$.

Some quantitative examples

1. Pure fixed adjustment cost.

$$
\max \{p x F(n)-w n
$$ n

$$
\begin{aligned}
& -C \mathbb{1}_{\Delta n \neq 0} \\
& + \text { Forward value }\}
\end{aligned}
$$

Revenue - costs
Fixed adj. cost

Adjustment policy takes Ss form as above.

Some quantitative examples

2. Fixed and kinked adjustment costs
[à la Cooper et al. (2007) and Bloom (2009)].
$\max \{p x F(n)-w n$
n

Revenue - costs
Fixed adj. cost
Kinked adj. cost +Forward value\}

Kinked costs attenuate size of adjustments.

Allowing for kinked adjustment costs

Aggregation with kinked costs

The density of employment across firms $h(n)$ evolves according to:

$$
\Delta h(n)=-\phi(n)\left[h_{-1}(n)-\hat{h}(n)\right]
$$

$\hat{h}(n)$ is a flow steady state that sets $\Delta h(n)=0$:

$$
\hat{h}(n)=\frac{\operatorname{Pr}(\text { down to } n) h_{l}^{*}(n)+\operatorname{Pr}(\text { up to } n) h_{u}^{*}(n)}{\operatorname{Pr}(\text { from } n)}
$$

Aggregation with kinked costs

The density of employment across firms $h(n)$ evolves according to:

$$
\Delta h(n)=-\phi(n)\left[h_{-1}(n)-\hat{h}(n)\right]
$$

$\hat{h}(n)$ is a flow steady state that sets $\Delta h(n)=0$:

$$
\hat{h}(n)=\frac{\left(1-H_{-1}\left[L^{-1} l(n)\right]\right) h_{l}^{*}(n)+H_{-1}\left[U^{-1} u(n)\right] h_{u}^{*}(n)}{1-H^{*}[U(n)]+H^{*}[L(n)]}
$$

Pure fixed adjustment cost, $\operatorname{Pr}($ inaction $)=0.5$

Pure fixed adjustment cost, $\operatorname{Pr}($ inaction $)=0.8$

Dynamic correlations with output

Two steps:

1. Regress (HP-filtered) output on 4 lags of itself; residual is the "output innovation".
2. Regress (HP-filtered) employment on 4 lags of itself as well as the current and first, second, and thirdlagged values of the output innovation.

- Figure reports response to 1% output innovation.
- Do same for actual and flow steady-state employment in both data and model-generated time series.

