Systemic bank runs in a DSGE model

Keiichiro Kobayashi¹ Tomoyuki Nakajima²

¹Hitotsubashi University

²Kyoto University

August 8, 2011 Conference at the Canon Institute for Global Studies

Very Preliminary. Comments Welcome.

Financial crisis of 2007-2009

- What happened in the financial crisis of 2007-2009 can be interpreted as bank runs on various forms of short-term debt (Gorton and Metrick, 2010).
 - runs on the repurchase agreements (repo) market:
 - Gorton and Metrick (2009), Lucas and Stokey (2011), etc.
 - runs on commercial paper:
 - Arteta, Carey, Correa, and Kotter (2010), Covitz, Liang, and Suarez (2009), Kacperczyk and Schnabl (2010), etc.
 - runs on dealer banks:
 - Duffie (2011).
- Also, it was a "systemic event" in the sense that the financial intermediary sector became insolvent as a whole (Gorton and Metrick, 2009).
- It triggered the "Great Recession."

Repos and commercial paper

Adrian and Shin (2010)

Figure 11

Overnight repurchase agreements (repos) and M2. All data have been normalized to equal 1 on July 6, 1994. CP, commercial paper. Data taken from the Federal Reserve, 1994W1–2010W5.

Haircut index

Gorton and Metrick (2010)

Figure 4: The Repo-Haircut Index

Notes: The repo-haircut index is the equally-weighted average haircut for all nine asset

classes included in Table I, Panel D.

What we do in this paper

- develop a DSGE model with bank runs.
- focus on
 - "fundamental bank runs" instead of "sunspot bank runs," and
 - "systemic bank runs" rather than "idiosyncratic bank runs."
- analyze how a systemic bank run amplifies a negative productivity shock:
 - a sufficiently negative productivity shock
 - \implies a systemic bank run
 - $\Longrightarrow \downarrow$ supply of liquidity
 - $\Longrightarrow \downarrow$ working capital
 - \implies \uparrow labor wedge (gap between MPL and MRS)
 - $\implies \Downarrow$ output.

Our model: Banks

• Our modeling of banks follows Diamond and Rajan (2001).

- Banks have superior loan collection skills, which are relation specific.
 - Holdup problem: Banks may threaten to withdraw their skills in order to get more rents.
- Demand deposits make banks susceptible to runs, but prevent them from behaving opportunistically.
- Liquidity creation by banks:
 - Banks obtain funds in the form of demand deposits and make loans to firms;
 - they collect loan payments from firms and provide the economy with liquidity.

Our model: Systemic bank runs

- A systemic bank run is caused by a sufficiently negative productivity shock:
 - A negative technology shock lowers the surplus generated by firms, which lowers the repayments collected by banks.

• If the shock is bad enough, all banks would become insolvent, which leads to a systemic bank run, and damages the economy's capacity to create liquidity.

Introduction

Our model: Propagation and amplification

- A systemic bank run reduces the supply of liquidity.
 - \implies lowers the amount of working capital available to firms.
 - \implies decreases employment and hence output further.
- A bank run distorts the economy by enlarging the gap between MPL and MRS (the labor wedge).
 - consistent with what happened during the Great Recession.

2 The model economy

3 Numerical results

Households

- a continuum of identical households.
- Each household consists of
 - a (standard) infinitely-lived consumer/worker, and
 - overlapping generations of two-period lived firms and banks.
- In every period a firm and a bank are born in each household.

Firms and banks

- A new born firm needs funds to purchase physical capital and to hire labor.
 - It must obtain loans from a bank in a different household.
- A new born bank must raise funds in the form of demand deposits.
 - It should obtain them from other households.
- New born firms and banks in different households are matched randomly in each period.

Match between a firm and a bank

- Consider a match formed in period t.
- The bank:
 - b_t = amount of funds that the bank obtains by issuing demand deposits.
 - acquires relation-specific loan-collection skills.
- The firm:
 - in period *t*:
 - borrows b_t from the bank.
 - purchases physical capital k_t in period t.
 - deposits the rest, $d_t^F \equiv b_t k_t$, which becomes the working capital.
 - in period t + 1:
 - hires labor from other households and produces output:

$$y_{t+1} = A_{t+1}k_t^{\alpha}l_{t+1}^{1-\alpha}$$

where A_{t+1} = economy-wide productivity shock.

Repayment of the loan

- Let Π_{t+1} = total surplus generated by the firm in period t + 1.
- The repayment of the loan is a constant fraction of Π_{t+1} .
- The bank has superior loan-collection skills.
 - $\Theta \Pi_{t+1}$ = the amount that the bank can take as the repayment of the loan;
 - But if someone else negotiates with the firm on the repayment, it reduces to $\theta \Pi_{t+1}$, where $\theta < \Theta$.
- In particular if a run against the bank occurs,
 - the depositors of the bank become a collective owner of its loans to the firm and they collectively negotiate with the firm on the repayment.
 - As a result, the depositors obtain $\theta \Pi_{t+1}$ from the firm, which is shared equally.

Bank runs

• Let s_{t+1} denote the occurrence of a systemic bank run in period t+1.

$$s_{t+1} = \left\{egin{array}{ll} 1, & ext{ if a systemic bank run occurs in period } t+1, \ 0, & ext{ otherwise.} \end{array}
ight.$$

• $1 + r_t$ = interest rate on demand deposits between periods t and t + 1.

• When a bank run occurs, however, it is reduced to $\xi_{t+1}(1 + r_t)$.

• Define $\tilde{\xi}_{t+1}$ by

$$ilde{\xi}_{t+1} = \left\{ egin{array}{ll} 1, & \mbox{if } s_{t+1} = 0, \ \xi_{t+1}, & \mbox{if } s_{t+1} = 1. \end{array}
ight.$$

Problem of the firm born in period t

• Profit earned by the firm born in period t is

$$\pi^{\mathsf{F}}_{t+1} = (1 - \widetilde{ heta}_{t+1}) \mathsf{\Pi}_{t+1}$$

where

$$\begin{aligned} \Pi_{t+1} &= A_{t+1}k_t^{\alpha}l_{t+1}^{1-\alpha} - w_{t+1}l_{t+1} + \tilde{\xi}_{t+1}(1+r_t)d_t^F + (1-\delta)k_t \\ \tilde{\theta}_{t+1} &= \begin{cases} \Theta, & \text{if } s_{t+1} = 0, \\ \theta, & \text{if } s_{t+1} = 1. \end{cases} \end{aligned}$$

• The firm chooses $\{k_t, d_t^F, I_{t+1}\}$ to maximize:

$$\begin{split} \max_{\substack{\{k_t, d_t^F, l_{t+1}\}}} & E_t \frac{\beta \lambda_{t+1}}{\lambda_t} \pi_{t+1}^F, \\ \text{s.t.} & k_t + d_t^F \leq b_t, \\ & w_{t+1} l_{t+1} \leq \tilde{\xi}_{t+1} (1+r_t) d_t^F, \end{split}$$

where $\beta^t \lambda_t = \text{stochastic discount factor.}$

Problem of the bank born in period t

• Profit earned by the bank born in period t is

$$\pi^{B}_{t+1} = \max\left\{\tilde{\pi}^{B}_{t+1}, \mathbf{0}\right\},\$$

where

$$\tilde{\pi}_{t+1}^B = \Theta \Pi_{t+1} - (1+r_t)b_t + T_{t+1},$$

where T_{t+1} denotes the transfer from the government.

• It chooses b_t to solve

$$\max_{b_t} E_t \frac{\beta \lambda_{t+1}}{\lambda_t} \pi^B_{t+1}.$$

Here, The bank takes into account the fact that the paired firm chooses $\{k_t, d_t^F, I_{t+1}\}$ as a function of b_t by solving its profit-maximization problem.

Bank run

- If a bank run occurs in period t + 1, it does so after A_{t+1} has been realized but before the production process starts.
 - \bar{A}_{t+1} = threshold level of productivity below which a bank run occurs.
- The firm born chooses I_{t+1} given $(d_t^F, k_t, A_{t+1}, r_t, w_{t+1}, \tilde{\xi}_{t+1})$ to solve

$$\max_{l_{t+1}} A_{t+1} k_t^{\alpha} l_{t+1}^{1-\alpha} - w_{t+1} l_{t+1}$$

s.t. $w_{t+1} l_{t+1} \le \tilde{\xi}_{t+1} (1+r_t) d_t^F$

• Given $(d_t^F, k_t, r_t, w_{t+1})$, consider the hypothetical problem for each A' > 0:

$$J_{t+1}^{*}(A') \equiv \operatorname*{arg\,max}_{l_{t+1}} A' k_{t}^{\alpha} l_{t+1}^{1-\alpha} - w_{t+1} l_{t+1}$$

s.t. $w_{t+1} l_{t+1} \leq (1+r_{t}) d_{t}^{F}$

Bank run

• The threshold value \bar{A}_{t+1} is given as the solution to

$$\Theta \Big\{ \bar{A}_{t+1} k_t^{\alpha} \big[I_{t+1}^* (\bar{A}_{t+1}) \big]^{1-\alpha} - w_{t+1} I_{t+1}^* (\bar{A}_{t+1}) + (1+r_t) d_t^F + (1-\delta) k_t \Big\} \\ - (1+r_t) b_t + T_{t+1} = 0.$$

• If $A_{t+1} < \bar{A}_{t+1}$ then $\tilde{\pi}^B_{t+1} < 0$ even without a bank run.

• Thus, all banks born in period t become insolvent if $A_{t+1} < \bar{A}_{t+1}$. That is,

$$s_{t+1} = 1 \quad \Longleftrightarrow \quad A_{t+1} < \bar{A}_{t+1}$$

• When a bank run occurs, the ex-post rate of return on the bank account is determined by

$$\xi_{t+1}(1+r_t)b_t = \theta \Pi_{t+1} + T_{t+1}.$$

Household's problem

• Preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t, I_t).$$

- The only financial asset that each household can hold is the bank account in banks owned by other households.
- Its flow budget constraint is

$$c_t + d_t^H = \tilde{\xi}_t (1 + r_{t-1}) d_{t-1}^H + w_t l_t + \pi_t^F + \pi_t^B - T_t$$

where T_t is lump-sum taxes.

Government policy

- Compare two simple policy regimes.
 - Without policy intervention (laissez-faire):

$$T_t = 0$$
, for all t .

With intervention:

$$T_{t} = \max \left\{ (1 + r_{t-1})b_{t-1} - \Theta \left[A_{t}k_{t-1}^{\alpha}(I_{t}^{*}(A_{t}))^{1-\alpha} - w_{t}I_{t}^{*}(A_{t}) + (1 + r_{t-1})d_{t-1}^{F} + (1 - \delta)k_{t-1}\right], 0 \right\}$$

With the second regime, A_t ≥ Ā_t for all t so that a systemic bank run never occurs.

Summary: Flow of funds in normal times

• Loans to firms:

• Creation of liquidity (without govt subsidies):

$$\stackrel{\Theta\Pi_t}{\longrightarrow} \underset{(\text{born in } t-1)}{\text{banks}} \xrightarrow{(1+r_{t-1})b_{t-1}} \begin{cases} \text{households: } (1+r_{t-1})d_{t-1}^H \\ \text{firms: } (1+r_{t-1})d_{t-1}^F \end{cases}$$

• The demand for liquidity is predetermined. As long as the supply of liquidity exceeds the demand, a bank run does not occur.

$$\underbrace{(1 + r_{t-1})(d_{t-1}^{H} + d_{t-1}^{F})}_{\text{demand for liquidity}} \leq \underbrace{\Theta\Pi_{t}}_{\text{supply of liquidity}}$$

Summary: Systemic bank run

- A negative productivity shock reduces Π_t , and hence the supply of liquidity $\Theta \Pi_t$.
- Under the laissez-faire policy regime, a systemic bank run occurs if the shock is large enough that

• As a result, the supply liquidity further reduces to $\theta \Pi_t$:

$$\begin{array}{ccc} \text{firms} & \xrightarrow{\theta \Pi_t} & \text{banks} & \xrightarrow{\theta \Pi_t} & \begin{cases} \text{households: } \xi_t(1+r_{t-1})d_{t-1}^H \\ \text{firms: } \xi_t(1+r_{t-1})d_{t-1}^F \end{cases} \end{array}$$

• Rationing of liquidity: only the fraction ξ_t of the liquidity demand is satisfied.

$$\xi_t (1 + r_{t-1}) (d_{t-1}^H + d_{t-1}^F) = \theta \Pi_t$$

Summary: Propagation and amplification

- A systemic bank run reduces the amount of working capital available to firms by a factor of ξ_t.
 - The working capital is used to pay the wage bill:

$$\underbrace{w_t l_t}_{\text{wage bill}} \leq \underbrace{\xi_t (1 + r_{t-1}) d_{t-1}^F}_{\text{working capital}}$$

- Thus the run reduces employment and output further, amplifying the effect of the productivity shock.
- Define the labor wedge as the gap between MPL and MRS:

labor wedge =
$$\frac{MPL}{MRS}$$

A systemic bank run distorts the economy by increasing this gap.

The model economy

O Numerical results

4 Conclusion

Numerical example

• Functional forms:

$$u(c, l) = \ln(c) + \psi \ln(1-l).$$

- Parameter values: $\alpha =$ 0.4, $\beta =$ 0.98, $\delta =$ 0.1, $\psi =$ 0.75, $\Theta =$ 0.9, $\theta =$ 0.65.
- Period 0:
 - at the non-stochastic steady state associated with $A_t = 1$ for all t.
- Period 1:
 - there is an unexpected temporary decline in productivity: $A_1 = 0.95$.
- Periods $t \geq 2$:
 - A_t returns to the original level: $A_t = 1$ for all $t \ge 2$.

Kobayashi and Nakajima

Systemic bank runs in a DSGE model

Introduction

2 The model economy

3 Numerical results

Conclusion

- constructs a DSGE model with systemic bank runs.
 - bank run $\Rightarrow \downarrow$ liquidity $\Rightarrow \downarrow$ working capital $\Rightarrow \uparrow$ labor wedge $\Rightarrow \downarrow$ output.
- The systemic bank run amplifies the effect of a negative productivity shock in an nonlinear way:

Conclusion

- Some directions for future research:
 - In the current model, the policy intervention to prevent a systemic bank run has no costs at all.
 - Distortionary effects of such policy should be taken into account.
 - consider more rich and realistic ways of policy intervention.
 - consider public liquidity such as money and government bonds.

Related literature

- bank runs:
 - Angeloni and Faia (2010): DSGE model with idiosyncratic bank runs;
 - Uhlig (2010): two-period model of systemic bank runs;
 - Kato and Tsuruga (2011): two-period OLG model with systemic bank runs.
- agency problems between banks and depositors:
 - Gertler and Karadi (2011), Gertler and Kiyotaki (2011), and Gertler, Kiyotaki and Queralto (2010).