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Abstract

We investigate a monetary model with two kinds of decentralized markets and

where each agent stochastically chooses the market in which to participate. In one

market, the pricing mechanism is competitive, whereas in the other, the terms of trade

are determined by Nash bargaining. We show the sub-optimality of the Friedman

rule, which is already demonstrated by existing models, where the setting of search

externality in the competitive market is not completely satisfactory. We show this

result in the more plausible setting when the competitive market does not have a

search externality.
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1 Introduction

Analyzing monetary economics and associated policy depends crucially on the market struc-

ture posited in the model used for analysis. Lagos and Wright (2005) propose an extremely

tractable market structure, in which decentralized and centralized transactions occur al-

ternately. For simplicity, they assume that monetary transactions occur only in the single

decentralized market. However, the optimal monetary policy analysis changes by altering

this assumption. In this study, we analyze a model of the monetary economy in which two

distinct decentralized markets for monetary transactions exist simultaneously, and agents

can (stochastically) choose the market they enter by expending e¤ort. Speci�cally, prices

are given competitively in one market and by bargaining in the other. We show that the

optimal monetary policy depends crucially on this �choice-of-market�structure.

The buyers� and sellers� choice of markets occurs universally in reality. The mode of

monetary trade varies among di¤erent markets, for example, in big cities and small villages.

Retail goods are sold competitively in large stores in big cities, while in rural areas, they

are often sold in small family shops where buyers and sellers can negotiate the prices and

conditions. We could say that the pricing mechanism is mostly competitive in big cities and

tends to be decided by bilateral bargaining in small towns. Some evidence suggests that

bargaining is common in some developing economies (Jaleta and Gardebroek 2007; Keniston

2011) or industries (Ayers and Siegelman 1995; Morton, Zettelmeyer, and Silva-Russo 2004).

Our model relates to the literature of the new monetarist models pioneered by Lagos and

Wright (2005). Rocheteau and Wright (2005) introduce and analyze three distinct pricing

mechanisms in a monetary market in the Lagos�Wright model: bargaining, competitive
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pricing, and competitive search. Rocheteau and Wright (2005) assume that one of these

three modes determines the price in a unique monetary market. On the other hand, we

assume that two monetary markets exist simultaneously; that is, a market with competitive

pricing and another with bargaining, and that agents can choose which market to enter.

Given this market structure, we show that the Friedman rule is not the optimal monetary

policy. The sub-optimality of the Friedman rule is an important topic in the literature.

Rocheteau and Wright (2005) show that the Friedman rule is not optimal in the competitive

pricing market given the presence of a search externality.1 Nosal and Rocheteau (2011) show

that the Friedman rule is optimal in a competitive pricing market when a search externality

does not exist. Our study shows that the Friedman rule is not optimal, even when a search

externality does not exist in the competitive pricing market, given that another monetary

market exists.2

Showing the sub-optimality of the Friedman rule through our model is a theoretical

contribution to the literature for the following reasons. We believe that a setting with

a search externality in a competitive pricing market is not completely satisfactory in the

existing models that show the Friedman rule to be a suboptimal monetary policy. In Section

4 of Rocheteau and Wright (2005), for example, the probability of entering a competitive

market for an agent depends on the number of other agents who enter the market, and once

1Hiraguchi and Kobayashi (2014) also show that the Friedman rule may not be optimal when a search

externality exists in a monetary market with competitive pricing.
2Nosal and Rocheteau (2011, Subsection 6.6) demonstrate that the Friedman rule may not be optimal

in a model in which the agent can choose to become either a buyer or seller in a unique monetary market.

In our model, an agent chooses the monetary market in which to participate. The extensive margin is the

key factor in both models, which makes some in�ation in excess of the Friedman Rule optimal.
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entering the market, the agent can always trade. However, this assumption is not necessarily

plausible because there is no sound explanation for why one agent�s probability of entering a

competitive market depends (positively) on the number of other people who enter the same

market. It would be a plausible assumption if Rocheteau and Wright (2005) posited that

one�s probability is independent of the number of others. In our study, we posit exactly this

assumption: an individual agent�s search e¤ort determines the probability of his entering

the market, but is independent of the e¤ort or number of other agents. Thus, the main

theoretical contribution of our paper is that it shows the sub-optimality of the Friedman

rule in a more plausible setting than those assumed in the existing literature.3

The rest of this paper proceeds as follows. In Section 2, we construct a model, charac-

terize the competitive equilibrium, and show the sub-optimality of the Friedman rule. In

Section 3, we consider a case in which sellers choose the market; both welfare and output are

higher when monetary policy deviates from the Friedman rule. Section 4 concludes. In the

appendix, we describe a version of the model in which buyers and sellers choose the market.

3In our setting, the probability of entering the market is similar to that of Lagos and Rocheteau (2005).

Our model can be seen as a model that extends the Lagos�Rocheteau model by introducing choice of market.

The Friedman rule is optimal in Lagos and Rocheteau, whereas it is suboptimal when we introduce choice

of market, as in this paper.
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2 A model with buyers�search

2.1 Set-up

Time is discrete and changes from t = 0 to +1. There is a continuum of in�nitely lived

agents with measure two. We divide each day into day and night. The day market is

decentralized and the night market is centralized. In each period, the agent becomes a buyer

or seller with probability 0:5. Thus, the measure of buyers and sellers equals one.

During the day time, two kinds of decentralized markets (DM) open: the competitive

pricing market (DM-C) and the search market with Nash-bargaining (DM-S). In the DM-C,

there is no search friction, and buyers and sellers trade under competitive price p. In the

DM-S, there are search and matching frictions and the terms of trade are determined by Nash

bargaining. We assume that the buyer�s bargaining power is one. In the DMs, individuals

are anonymous and must use money to trade. During the night time, the centralized market

(CM) with no frictions opens.

At the beginning of the day market, the buyer enters the DM-C or DM-S with probability

� or 1 � �, respectively. The variable � depends on the buyer�s e¤ort level g. When the

buyer makes no e¤ort, the buyer enters the DM-C with probability �, where � 2 (0; 1=2) is

a constant. The utility cost of the buyer�s e¤ort g(�) satis�es g(�) = g0(�) = 0, g0(�) > 0 if

� > �, g00(�) > 0 and g0(1��) = +1. 4. Thus, along any feasible allocation, � � � � 1��,

and regardless of the buyer�s e¤ort, the probability of entering the DM-S and DM-C are

larger than �. The sellers make no e¤ort, and are divided among the two markets with equal

probability, 0.5.

4The example of such a function is (���)2
1���� .
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The matching function in the DM-S is given by �(�b; �s), where �b (�s) is the measure

of buyers (sellers) in the DM-S. The matching function � has constant returns to scale

and is strictly increasing and concave. We assume that it satis�es �(0; �s) = �(�b; 0) = 0,

�1(0; �
s) = �2(�

b; 0) = +1, where �1 = @�
@x
and �2 =

@�
@y
and �(�b;�s)

�b
= �(1; �s=�b) 2 (0; 1)

for any �b and �s.

In the DM-S, each buyer matches with a seller with probability �(�b;�s)
�b

; for each seller, the

probability of meeting a buyer is �(�b;�s)
�s

. In the degenerate competitive equilibrium where

all buyers choose the same e¤ort level g(�), �b = 1 � �. On the other hand, sellers with

measure 0:5 enter the DM-C and the rest enter the DM-S. Thus, �s = 0:5.

In the DM-C and DM-S, the buyer obtains utility u(q) from consuming q units of output,

and the seller loses utility c(q) by producing q units of output. We assume that the function u

satis�es u0 > 0, u00 < 0, u(0) = 0, u0(0) = +1, limq!1 u
0(q) = 0 and limq!1fu(q)�u0(q)qg =

1. The function c satis�es c(0) = 0, c0 > 0, and c00 > 0. In the night market, each agent

obtains utility U(x) from consuming x units of goods and obtains linear disutility z from

producing z units of goods. The function U satis�es U 0 > 0, U 00 < 0, U(0) = 0, U 0(0) = +1

and limq!1 U
0(q) = 0. We suppose that q� > 0 and x� > 0 such that u0(q�) = c0(q�) and

U 0(x�) = 1. We let S� = u(q�)� c(q�) denote the maximized surplus.

Money is divisible and storable. Buyers need money to pay in the DM-C and DM-S. A

central bank controls the money supply M at a growth rate of � .
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2.2 Night market

We follow Lagos and Wright (2005) and focus on the degenerate stationary equilibrium in

which the level of consumption is the same across all agents and output is constant. We

index consecutive period variables by +1. We solve the model backward, and �rst investigate

the centralized night market.

Let V (m) denote the agent�s value function at the beginning of each period. In addition,

let W (m) denote the individual�s value function, who holds m units of money, at night. In

the night market, the agents solve

W (m) = max
C;h;m+1

fU(C)� h+ �V+1(m+1)g;

s.t. C = h+ �(m+ T �m+1);

where � > 0 is a discount factor, C is consumption, h is production, � is the value of money

in terms of the general good, and T is a transfer from the government. The �rst-order

conditions (FOCs) are

� = �
@V+1
@m+1

; (1)

U 0(C) = 1: (2)

Trade in the night market is e¢ cient. From the quasi-linearity of the utility function, we

obtain W (m) = �m+W (0).

2.3 Competitive-pricing market (DM-C)

There are two kinds of decentralized markets during the day sub-period: the DM-C and the

DM-S. We �rst investigate the DM-C. The value function of the buyer holding m dollars
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and entering the DM-C is

vb(m) = max
q�0

[u(q) +W (m� pq)] s.t. pq � m, (3)

where p is the price of the good. The optimal quantity q depends on m and is given by

q = m=p if u0(m=p) � p�;

u0(q) = p� otherwise.

We let S(m) = u(q)� �pq denote the buyer�s surplus in the DM-C.

The value function of the seller holding m dollars and entering the DM-C is

vs(m) = max
qs�0

[�c(qs) +W (m+ pqs)]. (4)

The value function W is linear, and thus the seller maximizes the surplus �pqs � c(qs) by

choosing qs. The �rst order condition is

�p = c0(qs):

Thus we have 1
�
@S
@m
= u0(q)

c0(qs) � 1, which is always nonnegative.

2.4 Search market (DM-S)

We next investigate the DM-S in which the buyer and seller trade bilaterally with Nash

bargaining. The value function of the buyer who holds m dollars and enters the DM-S is

v̂b(m) = max
q̂�0

[u(q̂) +W (m� d̂)] s.t. d̂ � m and � c(q̂) +W (ms + d̂) � W (ms); (5)

where (q̂; d̂) is the terms of trade and the second inequality shows the seller�s participation

constraint. Since the function W is linear, the buyer simply maximizes its surplus subject
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to the seller�s participation constraint:

max
q̂;d̂
[u(q̂)� �d̂] s.t. d̂ � m and �d̂� c(q̂) � 0: (6)

The participation constraint always binds. Thus, the quantity q̂ satis�es

c(q̂) = �m if �m � c(q�);

q̂ = q� otherwise.

The buyer�s surplus in the DM-S is Ŝ(m) = u(q̂)� c(q̂). We have 1
�
@Ŝ
@m
= u0(q̂)

c0(q̂) � 1, which is

always nonnegative. The seller�s surplus is zero and their value function is v̂s(m) =W (m).

2.5 Nominal interest rate

We denote the value function of the buyer who holds m dollars and chooses the e¤ort level

at the beginning of the day markets with

V b(m) = max
���

[�g(�) + �S(m) + (1� �)��Ŝ(m) +W (m)]; (7)

where �� = �(�b;�s)
�b

. The FOCs on � are

g0(�) = S � ��Ŝ; (8)

if S � ��Ŝ, and � = � if S < ��Ŝ. In the following, we focus on the case where S � ��Ŝ and

the buyer makes a positive e¤ort.

Similarly, the value function of a seller holding m dollars at the beginning of the day

market is

V s(m) = 0:5max
qs
[�pqs � c(qs)] +W (m):
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Di¤erentiating V b with respect to m, yields

@V b

@m
= �

@S

@m
+ (1� �)�� @Ŝ

@m
+ �: (9)

Di¤erentiating V s with respect to m, yields

@V s

@m
= �: (10)

Since each individual becomes a buyer or seller with probability 0.5, V (m) = 0:5fV b(m)+

V s(m)g and (1) implies that � = 0:5�f @V
b
+1

@m+1
+

@V s+1
@m+1

g. Thus, from (9), and (10), the nominal

interest rate i = �
��+1

� 1 = 1
2�
f� @S

@m
+ (1� �)�� @Ŝ

@m
g is determined by

i =
1

2�

�
�

�
u0(q)

c0(qs)
� 1
�
+ (1� �)��

�
u0(q̂)

c0(q̂)
� 1
��
: (11)

Since @S
@m
and @Ŝ

@m
are nonnegative, i is also non-negative.

2.6 Competitive equilibrium

In this section, we characterize the competitive equilibrium. In the DM-C, the buyer�s and

seller�s measures are � and 0:5, respectively, and the quantity supplied is 0:5qs and the the

quantity demanded is �q. Thus, qs = 2�q in the competitive equilibrium. Moreover, the

probability �� equals �(1��;0:5)
1�� .

i = 0:5

�
�

�
u0(q)

c0(2�q)
� 1
�
+ �(1� �; 0:5)

�
u0(q̂)

c0(q̂)
� 1
��

; (12)

The equilibrium price in the DM-C equals �p = c0(2�q) and the surplus is written as S(m) =

u(q)� c0(2�q)q. Thus (8) implies

g0(�) = u(q)� c0(2�q)q � �(1� �; 0:5)
1� � fu(q̂)� c(q̂)g: (13)
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The stationary equilibrium allocation fq; q̂; �; �g, if it exists, satis�es Eqs. (12) and (13).

In the following, we provide two more conditions to characterize the allocation fq; q̂; �; �g.

These conditions depend on whether the buyer�s feasibility constraints on money in the two

DMs bind or not. There are three cases.

Case 1: buyers�constraints bind in the DM-C but not in the DM-S. In this case,

the DM-S is e¢ cient, and the allocation fq; q̂; �; �g is determined by Eqs. (12), (13), and

the following equations:

�M = c0(2�q)q; (14)

q̂ = q�: (15)

Since the DM-S is e¢ cient, �M = c0(2�q)q � c(q�):

Case 2: the buyers�constraints bind in the DM-S but not in the DM-C. In this

case, the DM-C is e¢ cient, and the allocation fq; q̂; �; �g is determined by Eqs. (12), (13),

and the following equations:

u0(q) = c0(2�q); (16)

�M = c(q̂): (17)

Since the DM-C is e¢ cient, �M = c(q̂) � u0(q)q.

Case 3: buyers�constraints bind in the DM-C and DM-S. The allocation fq; q̂; �; �g

is determined by Eqs. (12), (13), and the following equations:

�M = c0(2�q)q; (18)

�M = c(q̂): (19)

11



2.7 Non-optimality of the Friedman rule

We can easily check that as i goes to zero, u0(q)
c0(2�q) and

u0(q̂)
c0(q̂) go to 1.

5If we denote the allocation

under the Friedman rule of setting i to zero as fqF ; q̂F ; �F ; �Fg, we obtain q̂F = q�. Eqs.

(12), (13) imply that the variables qF and �F are determined by

u0(qF ) = c0(2�F qF ); (20)

u(qF )� u0(qF )qF = g0(�F ) +
�(1� �F ; 0:5)
1� �F S�: (21)

The price of money under the Friedman rule must satisfy �FM � maxfc(q�); c0(2�F qF )qFg.

The following lemma shows that the equilibrium under the Friedman rule is uniquely deter-

mined under several parametric restrictions.

Lemma 1 Let q be a constant satisfying the equation

u(q)� u0(q)q = �(1� �; 0:5)
1� � S�:

If c0(2�q) < u0(q), then fqF ; �Fg is uniquely determined.

Proof. See the appendix.

The following lemma shows that the buyers�constraints continue to bind in both the

DM-C and DM-S as i converges to zero only under a special parametric restriction.

Lemma 2 Case 1 holds in the neighborhood of the Friedman rule when

u0(qF )qF > c(q�): (22)

5In Eq. (12), u0(q)
c0(2�q) � 1 and

u0(q̂)
c0(q̂) � 1 for any i. Moreover, since � � �, and �(1��; 0:5) � �(�; 0:5) > 0,

both � and �(1� �; 0:5) are away from zero.
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Case 2 holds in the neighborhood of the Friedman rule when u0(qF )qF < c(q�). Case 3 holds

at the Friedman rule only when u0(qF )qF = c(q�).

Proof. See the Appendix.

Generally, c(q�) di¤ers from u0(qF )qF , in which case, Case 3 does not hold. In the

following, we assume Eq. (22) and we focus on Case 1. We then simplify Eqs. (12) and (13)

as

i = 0:5�

�
u0(q)

c0(2�q)
� 1
�
: (23)

g0(�) = u(q)� c0(2�q)q � �(1� �; 0:5)
1� � S� (24)

The equations characterizing the equilibrium allocation are nonlinear and thus the existence

of the equilibrium is uncertain. The next proposition shows that under some parametric

restrictions, the competitive equilibrium allocation exists and the inequality above always

holds.

Proposition 1 Suppose u(q) = q1��

1�� and c(q) =
q�+1

1+�
where 0 < � < 1 and � > 1

�(1;0:5)
. Also

suppose that parameter � satis�es � 2 (0; (�=4)2=(1��)). If the nominal interest rate i is less

than �=2, then the stationary equilibrium allocation uniquely exists and always corresponds

to Case 1.

Proof. See the Appendix.

The next proposition shows that the e¤ort level is an increasing function of the nominal

interest rate i as long as i is small.

Proposition 2 d�
di

��
i=0
> 0.
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Proof. See the Appendix.

A higher nominal interest rate reduces the quantity q due to more severe monetary

friction. A smaller q makes the buyer�s surplus in the DM-C, S(q) = u(q) � c0(qs)q, larger

as long as the nominal interest rate is small. This is because under the Friedman rule, trade

is e¢ cient (i.e., u0(q) = c0(qs)); then, for a given �, the surplus satis�es

@S

@q
= fu(q)� c0(2�q)qg0 = �2�c00(qs)q < 0:

The larger surplus makes entering the DM-C more attractive, and buyers expend more e¤ort.

Thus d�
di

��
i=0
> 0.

Stationary welfare W depends on � and q:

W (�; q) = �g(�) + �(1� �; 1=2)S� + �u(q)� (1=2)c(2�q):

In the following, we evaluate the sign of the term dW
di
= @W

@�
d�
di
+ @W

@q
dq
di
under the Friedman

rule. From Eq. (21),

@W

@�

����
i=0

= �g0(�F )� �1(1� �F ; 1=2)S� + u(qF )� c0(2�F qF )

=

�
�(1� �F ; 1=2)

1� �F � �1(1� �F ; 1=2)
�
S� > 0:

The inequality holds because � is concave and �(0; �s) = 0; then

�(�b; �s)

�b
> �1(�

b; �s); (25)

for any �b > 0 and �s > 0. 6 This means that under the Friedman rule, welfare W is not

maximized with respect to the e¤ort level, and the equilibrium e¤ort level is insu¢ ciently

6Let f (1)(�b) = �(�b; �s). The function F (x) = f (1)0(�b)(x� �b) + f (1)(�b)� f (1)(x) satis�es F 0(x) < 0

for x < �b and F (�b) = 0. Thus, F (0) = �bf (1)0(�b)� f (1)(�b) > F (�b) = 0:
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low. On the other hand, W is maximized with respect to q because

@W

@q

����
i=0

= �Ffu0(qF )� c0(2�F qF )g = 0:

Therefore, dW
di

��
i=0

= @W
@�

��
i=0

d�
di

��
i=0

> 0, meaning that the Friedman rule is not optimal.

Thus, we have proven the following proposition.

Proposition 3 The Friedman rule is not optimal if Eq. (22) holds.

Eq. (25) shows the existence of the following search externality in DM-S. Suppose that

the number of buyers in the DM-S decreases in�nitesimally from 1 � � to 1 � (� + d�).

On the one hand, buyers recognize �(1��;1=2)
1�� S�d� as the private cost of exiting the DM-S.

On the other hand, the social cost of buyers exiting the DM-S is �1(1 � �; 1=2)S�d�. Eq.

(25) says that the private cost is larger than the social cost. This externality makes the

e¤ort level under the Friedman rule strictly lower than the socially optimal level. Thus, an

increase in the e¤ort level improves social welfare. Therefore, deviation from the Friedman

rule increases the amount of e¤ort and, in turn, increases social welfare. This result implies

that the externality associated with the extensive margin of exiting the DM-S is crucial for

the sub-optimality of the Friedman rule in our model.

3 Model: Only sellers choose the market

So far, we assume that buyers choose the markets. In this section, we describe a case in which

sellers choose the market and show that the non-optimality of the Friedman rule continues

to hold. We also show that in this case, output can also increase if monetary policy deviates

from the Friedman rule.
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Here, we assume that sellers can move from the DM-S to the DM-C with probability �

if they expend e¤ort h(�), which leads to a utility cost of h(�). The function h satis�es

h(0) = h0(0) = 0, h0 > 0, h00 > 0, and h0(1) = +1. Buyers are divided among the two

markets with equal probability, 1=2; thus, �b = 1=2. The buyer�s bargaining power in the

DM-S is equal to one. The problem in the night market is the same as before. Thus the

individual�s value function, who holds m units of money at night is W (m) = �m +W (0),

and (1) holds.

We �rst study the buyers�problem. In the DM-S, buyers with m units of money who

match with the sellers maximize their surplus Ŝ = u(q̂) � �d̂ subject to the feasibility

constraints on money and the seller�s participation constraint:

max
q̂;d̂
[u(q̂)� �d̂] s.t. �d̂ = c(q̂) and d̂ � m:

If �m � c(q�), then �d̂ = c(q�) and q̂ = q�; otherwise �d̂ = �m = c(q̂). In the DM-C, they

maximize their surplus S = u(q) � �pq subject to the feasibility constraints on money. In

the DM-S, buyers match with the sellers with probability �(�b; �s)=�b = �(0:5; �s)=0:5. The

probability of entering the DM-C and the one of entering the DM-S are equal to 0.5. Thus

the buyer�s value function is

V b(m) = �(0:5; �s)[u(q̂)� �d̂] + 0:5max
pq�m

[u(q)� �pq] +W (m):

Di¤erentiating V b(m) with m yields

@V b

@m
= �(0:5; �s)

@Ŝ

@m
+ 0:5

@S

@m
+ �; (26)

where 1
�
@S
@m
= u0(q)

c0(qs) � 1 and
1
�
@Ŝ
@m
= u0(q̂)

c0(q̂) � 1.

16



We next study the sellers�problem. If sellers enter the DM-C, they maximize their surplus

�pqs � c(qs) by choosing qs. If they enter the DM-S, then they get no surplus. Thus the

seller solves

V s(m) = max
�
[�h(�) + �max

qs
[�pqs � c(qs)] +W (m)]:

The FOCs for V s(m) are

h0(�) = c0(qs)qs � c(qs); (27)

�p = c0(qs);

@V s

@m
= �: (28)

Eqs. (1), (26) and (28) imply

�

�
= 0:5

�
@V b+1
@m+1

+
@V s+1
@m+1

�
=
�(0:5; �s)

2

@Ŝ

@m
+
1

4

@S

@m
+ �+1

In a competitive equilibrium, �s = 1 � � and 0:5q = �qs. The nominal interest rate i =

�=(�+1�)� 1 is denoted as

i =
�(0:5; �)

2

�
u0(q̂)

c0(q̂)
� 1
�
+
1

4

�
u0(2�qs)

c0(qs)
� 1
�
:

If we denote the allocation under the Friedman rule of setting i to zero as fqsF ; q̂F ; �F ; �Fg,

we obtain q̂F = q�, and the variables qsF and �F are determined by

h0(�F ) = c0(qsF )qsF � c(qsF );

u0(2�F qsF ) = c0(qsF )

We assume that the DM-S is e¢ cient and the DM-C is ine¢ cient when the nominal interest

rate is low. This holds if c0(qsF )qsF > c(q�). In this case, the FOCs imply

i =
1

4

�
u0(2�qs)

c0(qs)
� 1
�
: (29)
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The quantity qs and the probability � at the stationary equilibrium are jointly determined

by (27) and (29).

In the steady state, surplus of the seller is �h(�) + �f�pqs � c(qs)g, and the one of the

buyer is �(0:5; 1� �)S� + 0:5fu(q)� �pqg. We de�ne welfare as their sum:

W = �h(�) + �(0:5; 1� �)S� + 0:5u(q)� �c(qs):

The next proposition shows that a deviation from the Friedman rule is welfare-improving.

Proposition 4 The Friedman rule is not optimal, given that c0(qsF )qsF > c(q�), where

(�F ; qsF ) is the solution to (27) and (29) with i = 0.

In the following, we show that in�ation can increase output. 7 We follow Lagos and

Rocheteau (2005) and focus on output in the DMs. In the steady state, the total output in

the DMs equals Y = 1=2f�qs + �(1=2; 1� �)q�g. To simplify the analysis, we suppose that

h(�) = �2

2
, u(q) = 3a

2
q2=3, and c(q) = q2

2
with a > 0. The e¢ cient quantity is q� = a3=4. We

rearrange Eqs. (27) and (29) as

� =
1

2
(qs)2; (30)

(1 + 4i)qs = a(2�qs)�1=3: (31)

Eqs. (30) implies that 2Y =
p
2�

3
2 + �(1=2; 1� �)q�, and we obtain

2
dY

di

����
i=0

=

�
3

2

p
2�F � q��2(1=2; 1� �F )

�
d�

di

����
i=0

;

where �F is the level of � under the Friedman rule. Eqs. (30) and (31) imply that � = a
2(1+4i)

.

Thus d�
di
< 0 and �F = a=2. Therefore dY

di

��
i=0
> 0 if and only if

3

2

p
2�F � q��2(1=2; 1� �F ) =

3

2

p
a� a3=4�2(1=2; 1� a=2) < 0. (32)

7When buyers search the markets, it is not clear whether in�ation increases the total output.
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Since �2(1=2; 0) = 1, (32) holds if a is su¢ ciently close to 2. Therefore we obtain dY
di
> 0

at i = 0.

4 Conclusion

In this study, we investigate a monetary model with two decentralized markets, and each

agent chooses which one to participate in by expending e¤ort. In one market, the pricing

mechanism is competitive, whereas in the other market, the terms of trade are determined

by Nash bargaining. The analysis shows that the optimal monetary policy may deviate

from the Friedman rule, even though the search externality is nonexistent in the competitive

pricing market. Existing models already show the sub-optimality of the Friedman rule in a

competitive market, though the search externality setting in the competitive market is not

completely satisfactory. The novelty of our model is that the sub-optimality of the Friedman

rule is derived in a more plausible setting for the search externality than those assumed in the

existing literature. The intuition for the sub-optimality of the Friedman rule is the following.

As the nominal interest rate deviates from zero, buyers expend more e¤ort because a higher

interest rate increases their gains from entering the competitive pricing market, while the

marginal increase in social welfare by entering the competitive pricing market is also positive.

Appendix

In Appendix A, we provide proofs for the propositions. Appendix B describes a version

of the model in which both buyers and sellers choose the market.
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A Proofs

A.1 Proof of Lemma 1

Let the function f (3) denote f (3)(q) = u(q)�u0(q)q. In the following, the following equations

have a unique solution

c0(2�q)

u0(q)
= 1; (33)

g0(�) +
�(1� �; 0:5)
1� � S� = f (3)(q); (34)

The function c0(2�q)
u0(q) is increasing in � and q. Thus, the �rst equation shows a negative

relationship between � and q. As q goes to 1, � goes to zero. The function f (3)(q) is

increasing, and then the second equation shows a positive relationship between � and q.

Since it satis�es f (3)(0) � 0 and f (3)(1) =1, there is a unique constant q satisfying

�(1� �; 0:5)
1� � S� = f (3)(q)

As q goes to 1, the � satisfying the second equation goes to 1� � since g0(1� �) =1.

Therefore, the two equations have a unique solution when
c0(2�q)

u0(q) < 1.

A.2 Proof of Lemma 2

If Eq. (18) continues to hold as i converges to zero, then under the Friedman rule, the money

balances in the DM-C satisfy �FM = c0(2�F qF )qF . Similarly, if Eq. (19) continues to hold

as i converges to zero, then under the Friedman rule, �FM = c(q�). In the DM-C, trades are

e¢ cient, and then c0(2�F qF ) = u0(qF ). Therefore, Case 1 occurs only if c(q�) = u0(qF )qF .
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A.3 Proof of Proposition 1

We have c0(2�q) = (2�q)� and q� = 1. The �rst order conditions imply

q1�� = h(�) � 1

2
�(1��)
�+� (2i+ �)

1��
�+��

��1
�+�

(1��)
;

q1�� = k(�) �
�

1

1� � �
�

2i+ �

��1 �
g0(�) +

�(1� �; 0:5)
1� � S�

�
:

The function h is decreasing and satis�es h(1) = 0, while k is increasing and satis�es

k(1 � �) = 1. Thus there exists a unique equilibrium if and only if h(�) > k(�). Since

0 < � < 1 and � > 1 by assumption and S� < 1
1�� , we have the following inequalties for

i � 0:5�:

h(�) =
1

2
�(1��)
�+� (2�)

1��
�+��

��1
�+�

(1��)
=

1

2
1��
�+� (2�)

�
�+�

(1��)
>

1

2(2�)
�

�+�
(1��) >

1

2(2�)
1��
�+1

>
1

4�
1��
2

;

k(�) =

�
1

1� � �
�

2i+ �

��1
�(1� �; 0:5)
1� � S� <

�
1

1� � � 1
��1

S� <
1

�
;

Thus h(�) > k(�) if 4�
1��
2 < � or equivalently � < (�=4)2=(1��). Therefore the equilibrium

is uniquely determined if i � 0:5�

Under the Friedman rule, we have

(qF )1�� =
1� �
�

�
g0(�F ) +

�(1� �F ; 0:5)
1� �F S�

�
:

We have

g0(�F ) +
�(1� �F ; 0:5)
1� �F S� > �(1; 0:5)

�
1

1� � �
1

1 + �

�
=
�(1; 0:5)(�+ �)

(1� �)(1 + �) : (35)

Case 1 holds if u0(qF )qF = (qF )1�� > c(q�) = 1
1+�
, or equivalently

g0(�F ) +
�(1� �F ; 0:5)
1� �F S� >

�

(1� �)(1 + �)
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Inequality (35) implies that this condition holds if �(1; 0:5)(�+ �) > � or

� > �

�
1

�(1; 0:5)
� 1
�
:

It holds if � > 1
�(1;0:5)

.

A.4 Proof of Proposition 2

We express Eqs. (12) as

2i

�
=

u0(q)

c0(2q�)
� 1: (36)

Di¤erentiating Eqs. (12) and (13) with respect to i under the Friedman rule, we obtain

a1
d�

di
= �a2

dq

di
;

2 = �a3
d�

di
� a4

dq

di
;

where

a1 = g
00(�) +

�(1� �; 1=2)
(1� �)2 S� +

�1(1� �; 1=2)
1� � S� + 2(q)2c00 > 0;

a2 = 2�qc
00 > 0;

a3 =
2�qu0c00

(c0)2
;

a4 =
2(�)2u0c00

(c0)2
� �u

00(q)

c0
:

In this case, we obtain d�
di
= 2a2

a1a4�a2a3 , and the numerator a2 is also positive. We express its

denominator as

a1a4 � a2a3 =

�
g00 +

�S�

(1� �)2 +
�1S

�

1� �

�
2(�)2u0c00

(c0)2

+

�
g00 +

�S�

(1� �)2 +
�1S

�

1� � + 2(q)
2c00
�
��u00
c0

;
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which is also positive. Therefore, we obtain d�
di
> 0 and dq

di
= �a1

a2
d�
di
< 0 under the Friedman

rule. �

A.5 Proof of Proposition 4

If i = 0, we obtain u0(q) = c0(qs). Eq. (27) determines � as a function of qs. If we let �(q) =

h0(�1)(c0(q)q�c(q)), �0(q) > 0. We can also express Eq. (29) as 4ic0(qs) = u0(2�(qs)qs)�c0(qs).

Di¤erentiating both sides of the equation by qs, we get

4
di

dqs
c0(qs) = 2fqs�(qs)g0u00(2�(qs)qs)� c00(qs)� 4ic00(qs): (37)

The right hand side of Eq. (37) is negative; thus, dq
s

di

��
i=0
< 0 and

d�

di

����
i=0

= �0(qs)
dqs

di

����
i=0

< 0: (38)

Using Eq. (27), we obtain

dW

dqs
= ��0(qs)�2S� + �fu0(2�qs)� c0(qs)g:

Under the Friedman rule, u0(2�qs) = c0(qs) and dW
dqs

���
i=0

= ��2S��0(qs) < 0; therefore,

dW
di

��
i=0
= dqs

di
dW
dqs

���
i=0
> 0 and a deviation from the Friedman rule improves welfare. �

B Case in which both buyers and sellers choose the

market

In this section, we consider a case in which both buyers and sellers choose the market in which

to participate. In the following, we suppose that �(�b; �s) = z(�b)�(�s)1�� with � 2 (0; 1).
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The seller can enter the DM-C with probability �s if the seller expends e¤ort �s. The utility

cost of the seller�s e¤ort h(�) satis�es h(0) = h0(0) = 0, h0(�) > 0, and h00(�) > 0 if � > 0.

The matching function is still given by �(�b; �s) and the probability of meeting a buyer is

(1� �s) �(�
b;�s)
�s

. In the competitive equilibrium, �s = 1� �s, where �s is the seller�s average

search intensity.

The problem of the night market is the same as before. The buyer and seller enter the

DM-S with probability 1 � �b and 1 � �s, respectively. In the DM-S, the buyer and seller

trade bilaterally with Nash bargaining as follows:

max
d�m

[u(q̂)� �d]�[�d� c(q̂)]1��; (39)

where � 2 (0; 1] denotes the bargaining power of the buyer and (q̂; d) represents the terms of

trade.

The value function of the buyer holding m dollars is

V b(m) = max
�b
[�g(�b) + �b max

pqb�m
fu(qb)� �pqbg

+(1� �b)�(�
b; �s)

�b
fu(q̂)� �dg+W (m)]:

We denote the buyer�s surplus in the DM-C, u(qb) � �pqb, as sb, and that in the DM-S as

u(q̂)� �d as ŝb. The FOCs for V b(m) are

u0(qb) � �p;

g0(�b) = sb � �(�
b; �s)

�b
ŝb;

@V b

@m
= �b

@sb

@m
+ (1� �b)@ŝ

b

@m
+ �:
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The value function of a seller holding m dollars is

V s(m) = max
�s
[�h(�s) + �smax

qs
[�pqs � c(qs)]

+(1� �s)�(�
b; �s)

�s
[�d̂� c(q̂)] +W (m)]

The FOCs for V s(m) are

�p = c0(qs);

h0(�s) = �pqs � c(qs)� �(�
b; �s)

�s
ŝs

@V s

@m
= �:

We again focus on the case in which the DM-S is e¢ cient when the nominal interest rate

is close to zero. We denote the buyer�s bargaining power as �. The stationary equilibrium

allocation fq; qs; �; �s; �g is determined by

g0(�) = u(q)� c0(qs)q � �S�

1� ��(1� �; 1� �
s); (40)

h0(�s) = c0(qs)qs � c(qs)� (1� �)S
�

1� �s �(1� �; 1� �s); (41)

�M = c0(qs)q > �c(q�) + (1� �)u(q�); (42)

�sqs = �q; (43)

and Eq. (23). The stationary welfare is

W = �g(�)� h(�s) + �(1� �; 1� �s)S� + �u(q)� �sc(qs):

If dW
di
> 0 at i = 0, then the Friedman rule is not optimal. We can show the following

proposition.
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Proposition 5 Suppose that � < �, and that when i = 0,

g00 +
��S�

(1� �)2 �
�1�S

�

1� � �
�s�1(1� �)S�
�(1� �s) > 0; (44)

h00 +
�(1� �)S�
(1� �s)2 �

�2(1� �)S�
1� �s � ��2�S

�

�s(1� �) > 0; (45)

where � = �(1� �; 1� �s). In this case, the Friedman rule is not optimal.

Proof. We reduce the system to the following three equations for the three unknowns

f�; �s; qg, given i:

2i = �

�
u0(q)

c0(�q=�s)
� 1
�
; (46)

g0(�) = u(q)� c0
��q
�s

�
q � �(1� �; 1� �

s)

1� � �S�; (47)

h0(�s) = c0
��q
�s

� �q
�s
� c

��q
�s

�
� �(1� �; 1� �

s)

1� �s (1� �)S�; (48)

Stationary welfare depends on three unknowns: �; �s, and q.

W (�; �s; q) = �g(�)� h(�s) + �(1� �; 1� �s)S� + �u(q)� �sc(�q=�s)

Thus, we obtain dW
di
= @W

@�
d�
di
+ @W

@�s
d�s

di
+ @W

@q
dq
di
. In the following, we let ~� = 1� �, �b = 1��,

and �s = 1� �s. Di¤erentiating Eqs. (46), (47), and (48) by i, we obtain

2 = �!1
d�

di
+ !2

d�s

di
� !3

dq

di
;

!4
d�

di
= �!5

dq

di
+ !6

d�s

di
;

!7
d�s

di
= !8

dq

di
+ !9

d�

di
;

where !1 =
�qu0c00

(c0)2�s , !2 =
(�)2qu0c00

(�s)2(c0)2 , !3 = �(
u0c00�
(c0)2�s�

u00

c0 ), !4 = g
00+ (q)2c00

�s
+ ��S�

(�b)2
� �1�S

�

�b
, !5 =

c00�q
�s
,

!6 =
(q)2�c00

(�s)2
+ �2�S

�

�b
, !7 = h00 +

(q)2(�)2c00

(�s)3
+ �~�S�

(�s)2
� �2

~�S�

�s
, !8 =

c00(�)2q
(�s)2

and !9 =
(q)2�c00

(�s)2
+ �1

~�S�

�s
.
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We obtain

d�s

di
= �!4!8 � !5!9

!5!7 � !6!8
d�

di
;

d�

di
=
2!5(!5!7 � !6!8)

�
;

where � = (!2!9 � !1!7)!25 + (!1!6 � !2!4)!5!8 + (!4!7 � !6!9)!3!5. We show that

!4!8 � !5!9 =
(�)2c00q

(�s)2

�
!10 �

�s

�

�1
�s
~�S�
�
;

!5!7 � !6!8 =
c00�q

�s

�
!11 �

�

�s
�2
�b
�S�
�
;

where !10 = g00 +
�

(�b)2
�S� � �1

�b
�S� and !11 = h00 +

�
(�s)2

~�S� � �2
�s
~�S�. In addition, we show

that

(!2!9 � !1!7)!25 =
(q)3(c00)3 (�)3 u0

(�s)3(c0)2

�
�!11 +

�

�s
�1
�s
~�S�
�
;

(!1!6 � !2!4)!5!8 =
(q)3(c00)3(�)5u0

(�s)5(c0)2

�
�!10 +

�s

�

�2
�b
�S�
�
;

(!4!7 � !6!9)!3!5 =!3!5

 
!10!11 �

�1�2�
~�(S�)2

�b�s

!

+ !12
(q)2c00

�s

�
!11 �

��2�S
�

�s�b

�
+ !12

(q)2(�)2c00

(�s)3

 
!10 �

�s�1~�S
�

��s

!

� (!2!9 � !1!7)!25 � (!1!6 � !2!4)!5!8;
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where !12 = (�u00

c0 )(
c00(�)2q
�s

). Therefore, the denominator of d�=di, �, satis�es

� = !3!5

 
!10!11 �

�1�2�~�(S
�)2

�b�s

!
+ !12

(q)2c00

�s

�
!11 �

��2�S
�

�s�b

�

+ !12
(q)2(�)2c00

(�s)3

 
!10 �

�s�1~�S
�

��s

!

> !3!5

 
!10 �

�s�1~�S
�

��s

!�
!11 �

��2�S
�

�s�b

�
+ !12

(q)2c00

�s

�
!11 �

��2�S
�

�s�b

�

+ !12
(q)2(�)2c00

(�s)3

 
!10 �

�s�1~�S
�

��s

!
;

where the inequality follows from !Y � xy > (! � x)(Y � y) for ! > x > 0 and Y > y > 0.

Since � > �, we obtain

@W

@q
= �[u0(q)� c0(qs)] = 0;

@W

@�
= �g0 � �1S� + u(q)� qc0(qs) =

�

�b
�S� � �1S� > 0;

@W

@�s
= �h0 � �2S� � c(qs) + c0(qs)qs =

�

�s
~�S� � �2S� < 0:

The assumptions directly lead to d�
di
> 0 and d�s

di
< 0. Therefore, dW

di
= @W

@�
d�
di
+ @W

@�s
d�s

di
> 0.

This inequality implies that raising the nominal interest rate from i = 0 can improve welfare.
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