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Abstract

Firms and households occasionally accumulate debt beyond the level they can

repay, particularly at times of financial distress. In such cases, debt restructuring can

take a considerable amount of time. In this paper, we propose a model for a long-term

debt contract with a time-consuming debt restructuring process, and demonstrate that

large debt can cause persistent inefficiency. The key is that if the debt is accumulated

beyond a threshold level, the lender can no longer commit to any future repayment

plans. The loss of lender’s credibility then discourages the borrower’s demand for new

loans and leads to an inefficient outcome. This contrasts with the existing theory

based on credit crunch or debt overhang, where it is the supply of new loans that

is dampened. Our model generates a debt Laffer curve, i.e., the lender’s payoff may

decrease with the contractual amount of debt. The efficiency of equilibrium can be

improved if debt restructuring is facilitated by policy measures.
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1 Introduction

Let us consider a borrower and a lender who are in a long-term financial relationship,

and suppose that, due to a sequence of bad shocks, the borrower’s debt has exceeded

the maximum amount that s/he can repay. For simplicity, let us also suppose that the

borrower’s liquidation value is so small that the lender never chooses to liquidate the

borrower. In that case, since the borrower is no longer able to repay the debt, the lender

would need to reduce the amount of debt (“debt forgiveness,” or “debt restructuring”

more broadly).1 In practice, however, debt restructuring can be very time-consuming and

the extent of its significance reflected in the data can be measured by the quantity of

so-called nonperforming loans.2

In this paper, we demonstrate how a lengthy debt restructuring process can create

nonperforming loans and lead to a persistent decline in the borrower’s economic activity.

Our theory is distinct from the existing theory based on credit crunch or debt overhang.

In our theory, it is the depressed demand for new loans by the borrower that causes the

inefficiency, whereas in the extant theory, it is the dampened supply of new loans. Given

that a financial crisis typically prompts an increase in nonperforming loans, our theory

sheds new light on why financial crises tend to cause long-lasting recession.

Formally, our model builds on that of Albuquerque and Hopenhayn (2004) (hereafter,

AH), who study the constrained efficient allocation of funds between a borrower and

lender in a model in which the borrower is unable to commit to repaying the debt. As

is standard in this literature, they formulate the problem recursively using the borrower’s

value as a state variable, where the borrower’s value comprises the present discounted value

(PDV) of dividend payments. One key implication of their model is that, if we abstract

from the possibility of liquidation, the supply of working capital to the borrower reaches

the first-best level in finite time. This constrained efficient allocation is implemented by

backloading payoffs to the borrower: All borrower’s profits are paid to the lender and the

borrower receives no dividends until the first-best allocation is attained.3

In the AH model, the debt is assumed to be state-contingent, and equals the PDV of

repayments from the borrower to the lender (“the lender’s value”). In our context, this is

interpreted as an environment in which the borrower’s debt is immediately and costlessly

1Debt forgiveness is one of many ways to restructure debt. However, in this paper, we focus on the role

of debt forgiveness, and sometimes use these two terms interchangeably.

2We review related evidence and literature on this in Section 2.

3In a more general model of long-term relationship between two parties with one-sided lack of com-

mitment, Ray (2002) demonstrates that the optimal contract involves backloading the payoff of the party

who lacks the ability to commit. Furthermore, as demonstrated, for instance, by Clementi and Hopen-

hayn (2006), backloading payoffs to the borrower also plays a crucial role in the dynamic optimal contract

problem with asymmetric information.
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adjusted in response to shocks to the profitability of the borrower.

To analyze the effects of lengthy debt restructuring processes, however, we assume

that the debt is not state-contingent. Then, given the possibility that the debt exceeds

the repayable amount, it is no longer equal to the PDV of repayments. In this paper, by

“debt” we mean the “contractual amount of debt,” rather than the PDV of repayments.

We then modify the AH model in two respects. First, we assume that neither the

borrower’s nor the lender’s value is verifiable so that they cannot be used as a state variable

in the financial contracting problem. Thus, the borrower’s value is not predetermined but

is instead selected in each period. The contractual amount of debt, on the other hand, is

predetermined, and it is the only variable that can be used as a state variable. Second, we

assume that debt restructuring takes time. For this, we start with an extreme assumption

that debt restructuring never occurs, no matter how large the borrower’s debt becomes.

This assumption is later relaxed so that debt restructuring is feasible but occurs only

probabilistically over time.

To illustrate our main results, let us consider the benchmark case in which debt re-

structuring is not at all feasible. Then, there are three regions for the value of debt:

“small,” “intermediate,” and “large.” When the borrower’s debt is “small,” our model be-

haves similarly to the AH model. The borrower does not receive dividends and all profits

are used to repay the debt until the amount of debt reaches some target level. Once the

target level is attained, the equilibrium allocation of funds becomes first best. However, it

becomes drastically different when the debt becomes “large.” In this region, backloading

the payoffs to the borrower becomes infeasible, and, as a result, the equilibrium alloca-

tion of funds becomes permanently inefficient (or until debt restructuring is made when it

occurs probabilistically). In the intermediary region, the debt can either become “small”

or “large” in the future. The borrower’s payoffs are backloaded in this region, but, due

to the latter possibility, the equilibrium provision of funds is less efficient than when the

debt is “small.”

When the debt becomes “large,” the amount of debt exceeds the PDV of repayments,

and increases monotonically over time regardless of the realizations of the shocks to the

borrower’s profitability. We interpret the debt in this region as “nonperforming loans.”

To emphasize this, we use the term “nonperforming loans (NPL) equilibrium” to describe

the equilibrium behavior of the model in this region of the debt.

Why does the equilibrium allocation of funds become persistently inefficient when the

debt becomes large? To illustrate this, consider the following simple example.4 A borrower

earns one million dollars every period. S/he owes a certain amount of debt to a lender.

The borrower chooses to default if the PDV of repayments exceeds one million dollars.

The interest rate is normalized to zero. If the amount of debt is less than or equal to one

4This example is elaborated further in Section 3.
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million dollars, there are many feasible repayment plans without default by the borrower.

For instance, one million dollars today and none afterwards, or a half million today and

the other half million in the next period, etc. Now, suppose, for whatever reason, that

the amount of debt has become two million, and consider the lender’s options without

reducing the contractual amount of debt. Can the lender simply tell the borrower that

s/he only needs to repay the lender one million today and nothing afterwards? Such a

proposal is not credible because in the next period the contractual value of the debt will

be one million and the lender has the right to (and thus will) demand that the borrower

repay the remaining one million dollars. Anticipating the lender’s behavior in advance,

the borrower will reject the lender’s offer and choose to cease operation immediately.5

What this example demonstrates is that the lender may not be able to commit to

dynamic repayment plans when the debt exceeds a certain threshold. Thus, in such a

case, the contractual problem between lender and borrower is characterized as two-sided

lack of commitment. Without the credible commitment to dynamic repayment plans, it

is not possible to backload payoffs to the borrower. This is why the borrower’s economic

activity is depressed persistently in the NPL equilibrium.

In our model, the lender’s ability to commit changes endogenously with the amount

of debt. When the debt is “small,” the lender can commit to dynamic repayment plans

so that the equilibrium behavior is similar to that in the AH model. When it becomes

“large,” however, the lender cannot commit to such plans. In the “intermediate” region,

the commitment is possible only insofar as the amount of debt stays away from the “large”

region.

Another implication of our model that is worth stressing is the debt Laffer curve. In

the AH model or other models of long-term debt, the lender’s value is a weakly increasing

function of the contractual amount of debt. In our model, however, the lender’s value

has an inverted U-shaped relationship with debt. It is interpreted as a debt Laffer curve,

and illustrates that the payoff for the lender can be increased by reducing the contractual

amount of debt.

The above results are obtained under the assumption that debt restructuring is not

possible. To examine their robustness, we extend the model so that debt restructuring

is possible but occurs only probabilistically. This is intended to capture frictions in the

bargaining between the lender and borrower in a reduced-form way. In this extension, we

demonstrate that, as long as the probability of debt restructuring is sufficiently small, the

basic features of the equilibrium remain the same except that the NPL equilibrium lasts

until the debt restructuring occurs rather than permanently.

The rest of this paper is organized as follows. In Section 2, we briefly review evidence

5In our model, the operation does not stop but its level becomes inefficiently low in the “NPL equilib-

rium.”
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and literature related to this paper. In Section 3, the example discussed above is elaborated

further to illustrate the intuition regarding how over-accumulation of debt impairs the

credibility of repayment plans offered by the lender and leads to an inefficient outcome.

In Section 4, we describe the baseline model, in which debt restructuring never occurs. In

Section 5, we discretize the model to prove the existence of the equilibrium. In Section

6, equilibrium dynamics of the discrete model are described. The results of numerical

simulations are also provided in this section. In Section 7, the baseline model is modified

in such a way that debt restructuring occurs stochastically. Section 8 concludes.

2 Related evidence and literature

2.1 Nonperforming loans

As discussed in the introduction, the main result of this paper is the inefficiency in the

relationship between a borrower and a lender caused by the delay in (or lack of) debt

restructuring. How relevant is this empirically? One way to see the significance of the

delay in debt restructuring in the data is to examine the amount of nonperforming loans.

Loans are classified as nonperforming if payments of interest and/or principals are

overdue by 90 days or more (IMF 2019). Such loans are not yet defaulted, as they are

not written off from the banks’ balance sheet. Since the borrowers are not bankrupt,

they continue operations, which typically requires the bank to provide additional loans

(working capital).

In Japan, for instance, the amount of nonperforming loans had surged since the begin-

ning of the 1990s, when the Japanese economy experienced a historic collapse of stock and

real-estate prices. A large number of nonperforming loans have remained in the Japanese

economy for approximately 15 years. Sekine, Kobayashi, and Saita (2003) demonstrate

that additional lending of working capital to the borrowers of nonperforming loans was

indeed widespread during this period, which they call “forbearance lending.” This prac-

tice is also called “evergreening” (Peek and Rosengren, 2005) and “zombie lending” (Ca-

ballero, Hoshi, and Kashyap, 2008). Peek and Rosengren (2005) and Caballero, Hoshi,

and Kashyap (2008) argue that nonperforming loans have caused a huge inefficiency in

the Japanese economy.

Some European countries experienced a similar problem after the Global Financial

Crisis of 2008–2009. Figure 1 plots the fraction of nonperforming loans in five European

countries, Greece, Ireland, Italy, Portugal, and Spain, during the period 2005–2017. Non-

performing loans increased in those countries following the financial crisis, and in 2017,

they still exceeded the pre-crisis levels. These observations indicate that lack of timely

restructuring of nonperforming loans is common in post-crisis recessions, and a significant

number of nonperforming loans can remain for years in crisis-hit economies.
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Figure 1: Fraction of non-performing loans in total gross loans. Source: World Bank.

The problem of nonperforming loans appears not to be severe in the United States,

as the ratio of nonperforming loans lowered promptly to the normal level following the

global financial crisis (5.0% in 2009 to 1.85% in 2014).6 However, these figures refer to

loans in the corporate sector. In the U.S., the nonperforming loan problem can be serious

for student loans, because federal and private student loans cannot be expunged through

bankruptcy (Lochner and Monge-Naranjo, 2016). Indeed, the delinquency rate of student

loans has risen quite significantly since the crisis. Our theory might be used to examine

the (potential) inefficiency associated with student loans for the U.S. economy.

2.2 Why is debt restructuring delayed?

The data on nonperforming loans suggests that debt restructuring is a time-consuming

process, in particular during times of financial distress.7 There must be various reasons as

to why debt restructuring is delayed and nonperforming loans linger on. Here, we discuss

three of these reasons that we consider relevant for the recent rise in nonperforming loans

6Source: World Bank.

7Related evidence is provided by Fukuda and Nakamura (2011), who consider the Japanese firms that

are classified as “zombies” by Caballero, Hoshi, and Kashyap (2008). In our context, zombie firms are

interpreted as borrowers of nonperforming loans. Fukuda and Nakamura (2011) demonstrate that firms

have a higher tendency to remain zombie if they have been zombie for longer periods.
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in several countries; namely, political factors, the Bank for International Settlements (BIS)

regulations, and bargaining frictions.

First, political factors might have played a crucial role in causing delays to debt re-

structuring in the 1990s in Japan and in the 2010s in some European countries. If mass

bankruptcies of borrowers occurred in various industries, the economic and political costs

would be huge. Thus, government officials and politicians tend to be reluctant to reveal

the problem. They may support, either directly or indirectly, banks’ postponement with

respect to writing off nonperforming loans. Peek and Rosengren (2005) and Caballero,

Hoshi, and Kashyap (2008) provide detailed descriptions of the Japanese case.

Second, the BIS regulation tends to incentivize banks to hide and evergreen nonper-

forming loans by providing additional funds to debt-ridden borrowers (see, e.g., Caballero,

Hoshi, and Kashyap, 2008). The BIS regulation implies that if a bank’s capital is impaired

and falls below a threshold, then the bank will be excluded from international operations.

Writing off nonperforming loans and realizing the losses might reduce a bank’s capital

below the threshold, thus making banks reluctant to undertake debt restructuring.

Third, bargaining frictions can cause a delay in the restructuring of nonperforming

loans. Debt restructuring involves bargaining between the lender and borrower, or among

the lenders if there are multiple lenders. Although efficiency requires an immediate set-

tlement, various sources of inefficiency are known to generate delays (see, e.g., Abreu and

Gul 2000, Fuchs and Skrzypacz 2010). A variety of anecdotal evidence suggests the impor-

tance of bargaining frictions. One example would be the negotiation over the Argentine

bond in the 2000s. Argentina defaulted on the sovereign bond in 2001, but it took 16

years for it to complete the negotiation with its major bondholders and to return to the

international capital market. One reason for this protracted delay is the pari passu litiga-

tion raised by one of the bondholders (Argentina v. NML Capital), which overturned an

otherwise-agreed settlement of debt restructuring and caused the years-long delay.

2.3 Literature

As discussed in the introduction, our model is based on AH. We impose a restriction on

the possibility of debt forgiveness in their model, and establish that such a restriction

brings a novel type of inefficiency into the relationship between borrower and lender.

Like AH, we use recursive contracts to formulate our equilibrium. Golosov, Tsyvinski,

and Werquin (2016) survey the literature on recursive contracts. Although we employ

dynamic programming to solve for our equilibrium, the Lagrange multiplier method may

also be used, as described by Marcet and Marimon (2019).8

8Commonly used frameworks for borrowing constraints in macroeconomics are provided by Kiyotaki

and Moore (1997), Carlstrom and Fuerst (1997), and Bernanke, Gertler, and Gilchrist (1999). The financial

contracts in these papers are essentially static, whereas in our model they are dynamic.
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As the key source of inefficiency in this paper is the over-accumulation of debt, it is

closely related to the literature on debt overhang. Since the seminal contribution by Myers

(1977) in corporate finance, the notion of debt overhang has been applied to different fields,

for instance, macroeconomics by Lamont (1995) and Philippon (2009), and sovereign debt

by Krugman (1988) and Kovrijnykh and Szentes (2007). The theory of debt overhang

also predicts under-investment by a heavily indebted borrower. Its argument is that it is

difficult for such a borrower to find a new lender because (at least a part of) the proceeds

from the new investment would be used for the repayment to the incumbent lenders. This

is a hold-up problem between the incumbent and new lenders. Our theory, however, is

different. First, we consider a long-term relationship between a single lender and a single

borrower. Second, debt overhang provides a theory as to why the supply of funds is

limited for heavily indebted borrowers. In contrast, our theory is intended to reveal why

the demand for funds by those borrowers is often depressed. The key is that, absent from

debt forgiveness, over-accumulation of debt makes the lender unable to commit to future

repayment plans. Third, our theory generates a debt Laffer curve; that is, the PDV of

repayments to the lender can decrease with the contractual value of the debt it holds.

This is also a unique feature of our theory.9

Our model can be interpreted as a formalization of the notion of “zombie lending”

(Caballero, Hoshi, and Kashyap, 2008). This notion refers to a practice whereby banks

extend loans to nonviable firms (“zombie firms”) to keep them operating and to help them

repay previous loans. As discussed in the previous section, we share their views regarding

why zombie lending persists. However, our views differ in terms of who become zombie

firms. The presumption by Caballero, Hoshi, and Kashyap (2008) is that such firms are

intrinsically inefficient. Thus, zombie firms should be liquidated because lending to them

prevents the entry of more efficient firms into the market. In contrast, our emphasis is

on the fact that even efficient firms can be zombie firms. In such a case, debt forgiveness

would be more suitable than liquidation to restore efficiency. In this respect, Fukuda and

Nakamura (2011) provide useful evidence. They extend the data used by Caballero, Hoshi,

and Kashyap (2008) for later periods, and find that a majority of the zombie firms indeed

subsequently recovered. They argue that swift corporate restructuring under substantial

financial support is essential in the recovery of zombie firms. Their evidence seems to be

consistent with our theory.

We often observe persistent recessions for years in the aftermath of financial crises (see,

e.g., Reinhart and Rogoff 2008). In particular, the Global Financial Crisis of 2008–2009

and the subsequent recession raised the growing concern about secular stagnation; that

is, economic growth in developed countries may have decelerated permanently (Summers

2013, Eggertsson and Mehrotra 2014). Since our theory predicts persistent inefficiency

9In contrast, Krugman (1988) assumes a debt Laffer curve exogenously.
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caused by the accumulation of nonperforming loans, we expect it to be helpful in un-

derstanding the persistence of the recession following a financial crisis. In particular, it

suggests that policies that facilitate debt restructuring can be effective for the recovery

from a crisis. Such policies have not been paid due attention in the recent research.10

Therefore, one purpose of our study is to call more attention to these issues.

To simplify the exposition, we assume in the baseline model that debt restructuring

(or debt forgiveness) is infeasible. However, we extend the model in Section 7 so that debt

restructuring is possible but only with a certain probability. The intention is to capture

bargaining frictions in a reduced form. An example of inefficient delays in bargaining is

provided by Abreu and Gull (2000), who demonstrate that the belief that the opponent of

negotiation may be irrational causes a delay in the settlement even between rational play-

ers. Another example is Fuchs and Skrzypacz (2010), who demonstrate that asymmetric

information with a stochastic arrival of new players creates a delay in the bargaining. In

the context of sovereign debt restructuring, Benjamin and Wright (2009) demonstrate that

option value of waiting creates a delay in sovereign debt restructuring, which may or may

not be efficient. Pitchford and Wright (2012) examine a model in which sovereign debt

restructuring is delayed by the holdout by creditors.

3 A simple example

Why does the lender lose credibility when the debt is too large? Why does this distrust

of the lender lead to an inefficient outcome? A simple example in this section provides an

intuitive account for these questions, which may be helpful to understand the full model

in Section 4.

Consider a simple economy where the net rate of interest is zero, r = 0. Time is

discrete and goes from zero to infinity, t = 0, 1, 2, · · · ,∞. There is a firm (borrower) and

a bank (lender), and the firm owes initial debt, D, to the bank in period 0. Let bt denote

the repayment to the lender in period t, and d0 ≡
∑∞

t=0 bt the present discounted value

(PDV) of repayments (as of period 0).

The firm can default on the debt D at any time, and it stops operations and walks away

if it defaults. When the firm continues operations, it earns 1 million dollars in each period.

With an (unspecified) outside opportunity, the firm will choose to default and walk away

if the PDV of repayments to the bank exceeds 1 million dollars. The liquidation value of

the firm for the bank is zero.

In this environment, the maximum repayable debt, dmax, equals 1 million dollars, i.e.,

dmax = 1 million. This is because, first, the repayment of any amount that is not greater

than 1 million is feasible because the firm earns 1 million every period, and, second, the

10The few exceptions include Geanakoplos (2014).
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repayment of any amount greater than 1 million is not feasible because the firm would

default and walk away if the bank insisted on a repayment greater than 1 million.

Case of small debt: Suppose that D ≤ dmax. In this case, there is no problem with

repayments. The bank can receive the full repayment of D, i.e., D = d0, and the firm

continues operations so that the economy achieves an efficient outcome. This result is

attained by, for example, the following repayment plan: b0 = D and bt = 0 for t ≥ 1. This

repayment plan is feasible because bt is (weakly) smaller than the borrower’s earnings (1

million dollars) for all t ≥ 0, and the PDV of repayments is also (weakly) smaller than

the maximum repayable amount (1 million dollars). The plan {bt}∞t=0 is credible because

the bank has no legal right to demand any amount in excess of D. The state variable D

is obviously payoff-relevant, as the payoff for the bank is D.

Case of large debt: What would happen if the contractual amount of debt, D, exceeded

the maximum repayable amount dmax, andD could not be reduced? To be specific, suppose

that D = 2 million. Obviously, the bank is unable to collect 2 million from the firm, but

what about 1 million (= dmax)? For example, suppose that the bank offers a repayment

plan {b′t}∞t=0, where b′0 = 1 million and b′t = 0 for all t ≥ 1. This plan is feasible, as

it satisfies that all repayments b′t are less than the borrower’s earnings and the PDV of

repayments is no greater than dmax.

However, this repayment plan {b′t}∞t=0 is not credible. To see this, suppose that the

firm accepts {b′t}. The firm then pays 1 million to the bank in period 0, and they enter

period 1 with the remaining debt D1 = 2 − 1 = 1 million. As the contractual amount of

debt is D1 = 1 million, the bank has the legitimate right to demand that the firm repay

1 million in period 1. Then, the argument in the above paragraph (Case of small debt)

applies in period 1, and the bank will offer a new repayment plan {b′′t }∞t=1, where b′′1 = 1

million and b′′t = 0 for t ≥ 2, and the firm has to accept it in period 1. Thus, the promise

{b′t}∞t=0 in period 0 is not credible, because it will necessarily be broken in period 1.

Anticipating what will happen in period 1, the firm evaluates in period 0 that the PDV

of repayments will be b′0 + b′′1 = 1+1 = 2, which exceeds dmax. Therefore, the firm chooses

to default and walk away in period 0, resulting in the closure of the firm’s business. As

the firm stops operations in period 0, the repayment is zero for all periods and the PDV

of repayments is also zero in equilibrium.

In sum, if D > dmax, the bank can no longer commit to any future repayment plans.

The loss of the bank’s credibility causes the borrower to stop operations, an inefficient

outcome. It is worth noting that the contractual amount of debt D is no longer payoff-

relevant when D > dmax in the sense that neither the lender’s nor the borrower’s value

depends on D. As discussed more formally below, this is the obverse of the coin of the
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loss of the bank’s credibility.

4 Baseline Model

We modify the AH model of long-term debt contract by restricting the possibility of debt

restructuring. Here, we focus on debt forgiveness as a means of debt restructuring. In the

baseline model, we consider the case in which debt forgiveness is not at all feasible. This

is extended in Section 7 to allow for stochastic debt restructuring.

As in AH, the borrowing constraint arises because the borrower may default at any

time. The amount of debt accumulates over time as negative productivity shocks hit the

borrower. If the debt exceeds a threshold value, it is no longer repayable. Then, as we

discuss, the lender loses credibility regarding the future repayment plans it offers, which

leads to an equilibrium outcome that is constrained inefficient. The loss of the lender’s

credibility is permanent in the baseline model, whereas the credibility can be restored

stochastically in the extended model in Section 7.

4.1 Setup

We consider an economy where time is discrete and goes from zero to infinity, i.e., t =

0, 1, 2, · · · ,∞. There is a bank (lender) and a firm (borrower), who have the common

discount factor β, where 0 < β < 1. At the beginning of period 0, the borrower owes

D0 to the lender as the initial debt. We do not make a specific assumption as to where

the initial debt comes from. The interest rate for the debt D0 is fixed at r in the debt

contract. We assume that the value of r is given exogenously, satisfies β ≥ 1
1+r as there

exists the default risk, and is constant over time. In the general equilibrium setting, the

value of r would be determined by the bank’s zero-profit condition. See footnote 12.

The debt at the beginning of period t, Dt, evolves as:

Dt+1 = (1 + r)(Dt − bt), for t ≥ 0, (1)

where bt is the repayment in period t. In each period t, the firm needs to borrow cap-

ital service (working capital), kt, to generate revenue, F (st, kt), where st ∈ R+ is the

productivity of the firm in period t.

The production function F (s, k) is a continuously differentiable function that satisfies

F (s, 0) = 0, and Fk(s, k) > 0, Fs(s, k) > 0, Fsk(s, k) > 0, and Fkk(s, k) < 0 for k > 0,

where Fk ≡ ∂F
∂k , Fs ≡ ∂F

∂s , Fsk ≡ ∂2F
∂k∂s , and Fkk ≡ ∂2F

∂k2 . The productivity st is either sH
or sL, where 0 ≤ sL < sH , and changes over time following a stationary Markov process

with Pr(st+1 = sj |st = si) = πij , where πij > 0 for i, j ∈ {L,H}. The firm finances the

input kt by borrowing the amount Rkt of an intra-period loan from the bank.11 The firm

11In this paper, we assume for simplicity that the firm borrows the intra-period loan, Rkt, from the
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borrows Rkt at the beginning of period t and repays Rkt at the end of the same period t,

where the price of capital input R is constant.

The borrower: The dividend to the firm owner is F (st, kt)−Rkt − bt. The firm owner

in our economy is protected by the limited liability so that the dividend is nonnegative:

F (st, kt)−Rkt − bt ≥ 0, ∀t ≥ 0. (2)

Let Vt denote the expected value of the PDV of dividends:

Vt ≡ Et


∞∑
j=0

βj [F (st+j , kt+j)−Rkt+j − bt+j ]

 = F (st, kt)−Rkt − bt + βEtVt+1, (3)

where Et is the expectation operator as of time t.

In any period t, the firm can choose to default after receiving working capital kt. If

the firm defaults on the debt Dt +Rkt, it has the outside opportunity to use kt and earn

G(st, kt). The value of outside opportunity G(s, k) is a continuously differentiable function

that satisfies G(s, 0) = 0, and Gk(s, k) > 0, Gs(s, k) ≥ 0 and Gkk(s, k) ≤ 0 for k > 0. It

is furthermore assumed that F (s, k) and G(s, k) satisfy

Fkk(s, k)−Gkk(s, k) < 0, and Fks(s, k)−Gks(s, k) > 0,

for all s and k (> 0). To prevent the firm from defaulting, the equity value of the firm,

Vt, must satisfy:

Vt ≥ G(st, kt), ∀t ≥ 0, (4)

which yields the borrowing limit on kt.

The bank: The bank takes as given the market rates of interest for the inter-period

debt, r, and the intra-period loan, R. In each period t, it chooses an offer {bt+j , kt+j}∞j=0

to maximize the expected value of the PDV of repayments, dt, which is defined as

dt = Et
∞∑
j=0

βjbt+j . (5)

The offer is made to the firm in a take-it-or-leave-it manner. If the firm declines the offer,

it will be liquidated. We assume for simplicity that the liquidation value of the firm is

zero. In equilibrium, therefore, the bank never chooses an offer that will be rejected by

the firm.

same bank from which it borrowed the initial loan, D0. It can be easily confirmed that our result does not

change even if the firm borrows Rkt from other banks.

12



As explained above, the firm has an option to default after it accepts an offer and

receives working capital kt. We assume that the bank obtains nothing when the firm

chooses to default. (In this case, G(st, kt) can be interpreted as the liquidation value of

the firm, and all of it is taken away by the firm.)

As the contractual value of the debt, Dt, is verifiable, the bank has no legal right to

require a repayment that exceeds the outstanding debt. Thus, the following constraint

must be satisfied:

bt ≤ Dt, (6)

for all t ≥ 0.

Debt restructuring: In this paper, by the term debt restructuring we mean debt for-

giveness; that is, a reduction in the contractual amount of debt, Dt. In the baseline model,

we consider the case in which debt restructuring is not possible. Thus, Dt cannot deviate

from the law of motion (1), and thus it is in general different from the PDV of repayments,

dt. This is the most crucial difference between our model and the AH model. In the AH

model, there is no distinction between Dt and dt, which reflects their assumption that

debt restructuring is made immediately at every instant of time.

4.2 The bank’s problem and the NPL equilibrium

Throughout this paper, we focus on the Markov Perfect Equilibrium, in which all actions

of agents and the value functions in each period t are functions of the state variables

(st, Dt) ∈ {sL, sH} × R+. We formulate it in the recursive way. In doing so, we omit the

time subscript, and use the subscript, +1, for the variables in the next period, and the

subscript, −1, for the variables in the previous period.

The bank’s problem: Given a belief in the borrower’s value, V e(s,D), the bank solves

the following problem,

d(s,D) = max
b,k

b+ βEd(s+1, D+1) (7)

s.t.


F (s, k)−Rk − b+ βEV e(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0,

D+1 = (1 + r)(D − b),
b ≤ D.

The solution to this problem is written as

b = b(s,D),

k = k(s,D).

13



We define

D+1(s,D) ≡ (1 + r)(D − b(s,D)),

V (s,D) ≡ F (s, k(s,D))−Rk(s,D)− b(s,D) + βEV e(s+1, D+1(s,D)).

Assuming rational expectations, the following condition must be satisfied in equilibrium:

V (s,D) = V e(s,D), (8)

and

V e(s,D) ≤ 1
1− β

{F (sH , k∗(sH))−Rk∗(sH)},

where k∗(s) is the first-best level of working capital at s = {sH , sL}:

k∗(s) ≡ arg max
k

F (s, k)−Rk. (9)

Assumption 1. If there exist multiple solutions to the maximization problem in (7) for

some (s,D), the bank selects the solution that maximizes k(s,D). Thus, if both (b1, k1)

and (b2, k2) solve the problem and k2 < k1, then k(s,D) = k1 and b(s,D) = b1.

An equilibrium is defined as a solution to (7), {k(s,D), b(s,D), d(s,D), V (s,D)}, that

satisfies (8).12 As discussed in Section 4.3 below, there is a fundamental difficulty in

proving the existence of an equilibrium and characterizing it for general values of D.

To overcome the difficulty, we consider a discretized version of the model from the next

section.

Meanwhile, in this section, we take the existence of an equilibrium as given, and restrict

attention to the behavior of the equilibrium for large values of D. Define D̄ by

D̄ ≡ 1 + r

r
{F (sH , k∗(sH))−Rk∗(sH)},

where k∗(sH) is the first-best level of working capital at sH , as defined in (9). Clearly,

there is no way for the firm to repay more than D̄. Here, we consider what would happen

when

D > D̄. (10)

12 This is a partial equilibrium model, in which r is given exogenously. In the general equilibrium,

the value of r would be determined by the zero-profit condition for the bank, given the initial amount of

lending D0:

D0 = d(s0, D0),

where D0 is the amount that the bank lends to the firm in period 0, and d(s0, D0) is the payoff for the

bank, defined as the solution to (7).
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We define knpl(s), and Gnpl(s) ≡ G(s, knpl(s)) as follows. First, define k̃npl(s) as

k̃npl(s) ≡ arg max
k

F (s, k)−Rk −G(s, k).

Then, if the following inequality holds for each s ∈ {sL, sH}

G(s, k̃npl(s)) ≥ βE[G(s+1, k̃
npl(s+1))|s], (11)

set knpl(s) = k̃npl(s). Note that (11) is necessarily satisfied for s = sH under our assump-

tion. To see this, since Fkk − Gkk < 0 and Fks − Gks > 0, k̃npl(sH) > k̃npl(sL).13 Then,

since G(s, k) is increasing in both s and k, G(sH , k̃npl(sH)) > G(sL, k̃npl(sL)). It follows

that (11) is satisfied for s = sH .

If (11) is not satisfied for s = sL, then redefine knpl(s) by

knpl(sH) = k̃npl(sH), (12)

G(sL, knpl(sL)) = βE[G(s+1, k
npl(s+1))|sL]. (13)

Given knpl(sH) = k̃npl(sH), there is a unique solution knpl(sL) that solves equation (13).

In Sections 4–6, we focus on the case where condition (11) is satisfied and knpl(s) =

k̃npl(s) for all s ∈ {sH , sL}. The next lemma demonstrates that k is no less than knpl in

equilibrium.

Lemma 1. In equilibrium, k(s,D) ≥ knpl(s) for all s ∈ {sL, sH} and D ∈ R+.

Proof. Suppose k(s,D) < knpl(s) for some (s,D) ∈ {sL, sH} × R+. Then, the bank can

increase both k and b without violating any constraints. This contradicts Assumption 1.

Thus, k(s,D) ≥ knpl(s).

The next proposition is one of the main results in this paper. It states that if the

contractual amount of debt D exceeds a threshold value D̄, then (i) the equilibrium values

{k(s,D), b(s,D), d(s,D), V (s,D)} do not depend on D; (ii) their values correspond to

knpl(s) defined above; and (iii) the contractual amount of debt D will never decrease. A

similar but stronger result is obtained for the discrete version of the model in Proposition

10 below.

Proposition 2. For D > D̄, the equilibrium values of the variables do not depend on

D, and satisfy {k(s,D), b(s,D), d(s,D), V (s,D)} = {knpl(s),bnpl(s), dnpl(s), Gnpl(s)},
where

bnpl(s) ≡ F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βEGnpl(s+1),

dnpl(s) ≡ bnpl(s) + βEdnpl(s+1).

13By differentiating the first-order condition for the definition of k̃npl(s), we obtain

dk̃npl

ds
= − Fks −Gks

Fkk −Gkk
> 0.
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Proof is given in Appendix A. As Lemma 1 shows, knpl is the lowest level of working

capital provision that can occur in equilibrium. Thus, once D becomes greater than D̄,

the equilibrium level of production falls to the lowest level permanently. This creates a

sharp contrast with the property of the constrained efficient equilibrium analyzed by AH,

where the first-best provision of working capital is attained in a finite period of time with

probability one in the absence of liquidation.

Intuitively, the proposition follows from the fact that the contractual amount of debt

D is no longer payoff relevant if it becomes so large that there is no way for the firm to

pay it back in full. Thus, the offer {k(s,D), b(s,D), d(s,D), V (s,D)} made by the bank

cannot depend on D in the region where D > D̄. In other words, the bank loses its ability

to commit to future repayment plans when the debt becomes “too large.” The loss of the

bank’s credibility forces its offer to be “static,” depending solely on the current exogenous

state s. As discussed by AH, constrained efficiency requires the offer to be dynamic. In

particular, the payoff to the firm must be backloaded until the amount of debt becomes

sufficiently small. In the absence of debt restructuring, too much debt makes the dynamic

provision of incentives infeasible, leading to an inefficiently low level of production by the

firm.

NPL equilibrium: In what follows, we refer to the set of values of endogenous vari-

ables defined above, {knpl(s), bnpl(s), dnpl(s), Gnpl(s)}, as the nonperforming loans (NPL)

equilibrium. This term might be somewhat confusing, because {knpl(s), bnpl(s), dnpl(s),
Gnpl(s)} does not constitute an equilibrium by itself. Instead, it comprises the set of val-

ues that those variables take in the region where the contractual amount of debt exceeds

a certain threshold. In this sense, it is a “part” of equilibrium. When we say that the

economy falls into the NPL equilibrium, we do not mean that the economy switches to a

new equilibrium called the NPL equilibrium. What we mean is, rather, that as a result of

accumulation of debt, the equilibrium values of endogenous variables become particular

levels provided by {knpl(s), bnpl(s), dnpl(s), Gnpl(s)}. Despite the potential confusion this

causes, we find it a convenient term for our expositional purpose.

4.3 Note on equilibrium for a small D

We have established that the economy falls into the NPL equilibrium for sufficiently large

D. For a smaller value of D, however, it is difficult to provide any further characterization

of equilibrium. There are two reasons for this, which we discuss in this subsection.

Discontinuity of the value functions: One of the difficulties is that a solution to the

(7) involves many (possibly an infinite number of) jumps in {b(s,D), k(s,D), V (s,D),

d(s,D)}. First of all, there is a discontinuous jump in those variables when D equals the
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threshold value above which the NPL equilibrium occurs. It then defines another, smaller

threshold for D at which the next period’s debt is just equal to the threshold for the NPL

equilibrium. It then defines another threshold, and so on. Such discontinuity makes the

application of the standard result for dynamic programming difficult. To overcome this

difficulty, we consider a discrete version of the model in the following sections.

Competing forces of back loading and front loading: Another difficulty arises if

we assume that β > 1
1+r . This is a natural assumption because the debt is risky. However,

it provides an incentive for the bank to front load the payment to the firm, at least when

the debt is sufficiently small. To see this, suppose that D is sufficiently small in period 0

so that the firm can repay D at once. If D is repaid in period 0, then the value for the

bank is D. On the other hand, if the firm repays nothing in period 0 and (1 + r)D in

period 1, then the present value for the bank in period 0 is β(1+r)D, which is larger than

D, because β(1 + r) > 1. Thus, for a small value of D, the bank may choose repayment b

such that D+1 is greater than D. Therefore, if β > 1
1+r , there are competing forces that

induce backloading and frontloading the payoff of the firm. This complicates the dynamics

of the contract. Because of this difficulty, we assume that β = 1
1+r to obtain analytical

results in Section 6. The case of β > 1
1+r is analyzed numerically in Section 6.5.

5 Discretization of the model

As discussed above, in the following, we consider a discrete version of the model.

Discretization: Denote the set of integers by Z, and define

∆ = {0, δ, 2δ, · · · , Nmaxδ},

∆+1 = {0, δ, 2δ, · · · , nδ[(1 + r)Nmaxδ]}.

Here, δ is the minimum unit of debt, Nmax ∈ Z is a sufficiently large integer, and nδ(x) =

nδ for x > 0, where n is the integer satisfying (n − 1)δ < x ≤ nδ. We assume that the

amount of debt, D, must be an element of ∆:

D ∈ ∆.

For each s ∈ {sL, sH}, the set of possible values of k, ∆k(s), is defined as

∆k(s) =
{
k

∣∣∣∣ ∃n ∈ Z, s.t. F (s, k)−Rk −G(s, k) = n× δ

1 + r

}
.
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Then, k∗(s) and knpl(s) are defined as

k∗(s) = arg max
k∈∆k(s)

F (s, k)−Rk,

knpl(sH) = arg max
k∈∆k(sH)

F (sH , k)−Rk −G(sH , k),

knpl(sL) = arg max
k∈∆k(sL)

F (sL, k)−Rk −G(sL, k),

Here, we are assuming that the parameter values are selected such that

Gnpl(sH) > β[πHHGnpl(sH) + πHLG
npl(sL)], (14)

Gnpl(sL) > β[πLLGnpl(sL) + πLHG
npl(sH)], (15)

where πHH = Pr(st+1 = sH |st = sH), πHL = 1− πHH , πLL = Pr(st+1 = sL|st = sL), and

πLH = 1− πLL. We also let Gnpl(s) ≡ G(s, knpl(s)).

Our arguments in this paper can be easily modified for the case where the inequali-

ties (14) and/or (15) do not hold.14 For each s ∈ {sL, sH}, the repayment in the NPL

equilibrium, bnpl(s), is defined by

bnpl(s) = F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βE[Gnpl(s+1)|s].

The set of possible values of repayments, ∆b(s,D), depends on D:

∆b(s,D) =
{
b ∈ R

∣∣∣∣ ∃D̃+1 ∈ ∆+1 s.t. b = D − 1
1 + r

D̃+1, and b ≥ 0
}
∪ {bnpl(s)}.

At each state (s,D), b and k must satisfy

b ∈ ∆b(s,D), and k ∈ ∆k(s).

Bank’s problem: Let V e(s,D) denote the bank’s expectation regarding the value of

the firm as a function of the current state (s,D). Then, the bank’s profit maximization is

formulated as the Bellman equation:

d(s,D) = max
b∈Γ(s,D)

b+ βEd(s+1, D+1), (16)

where

Γ(s,D) ={b ∈ ∆b(s,D) | ∃k ∈ ∆k(s) s.t.

D+1 = min{Nmaxδ, nδ[(1 + r)(D − b)]},
F (s, k)−Rk − b+ βEV e(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0}.

14For this purpose, it suffices to redefine

knpl(sH) = max{k ∈ ∆k(sH)| G(s, kH) ≤ β[πHHG(sH , k) + πHLG(sH , k
npl(sL))]},

and/or

knpl(sL) = max{k ∈ ∆k(sL)| G(s, kL) ≤ β[πLLG(sL, k)+πLHG(sH , k
npl(sH))]}. In the case where knpl(s)

is redefined, bnpl(s) is also redefined as bnpl(s) = F (s, knpl(s))−Rknpl(s).
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Here, nδ[(1+r)(D−b)] = n×δ, where n is the integer that satisfies (n−1)δ < (1+r)(D−
b) ≤ nδ.

Let Σ(s,D) denote the set of (b,D+1) that solves the maximization problem in (16).

The bank then decides k and V (s,D) by solving the following problem:

V (s,D) = max
k∈∆k(s), (b,D+1)∈Σ(s,D)

F (s, k)−Rk − b+ βEV e(s+1, D+1), (17)

subject to

F (s, k)−Rk − b+ βEV e(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

Let Λ(s,D) denote the set of (k, b,D+1) that solves the maximization problem in (17).

Given Λ(s,D), the equilibrium values of (k, b,D+1) at (s,D) are selected as follows.

First, b(s,D) and D+1(s,D) are decided as

b(s,D) = max
(k,b,D+1)∈Λ(s,D)

b, (18)

D+1(s,D) = min{Nmaxδ, nδ[(1 + r){D − b(s,D)}]}. (19)

Then, k(s,D) is determined by

k(s,D) = max
(k,b(s,D),D+1(s,D))∈Λ(s,D)

k.

Then, the value of the firm must satisfy

V (s,D) =F (s, k(s,D))−Rk(s,D)− b(s,D) + βEV e(s+1, D+1(s,D)). (20)

Assuming rational expectations, the bank’s belief V e(s,D) should be consistent with

V (s,D) given in (20):

V (s,D) = V e(s,D). (21)

Definition of the threshold, Dmax(s): Given the existence of an equilibrium, we define

Dmax(s) as follows:

Dmax(sH) ≡ max{D ∈ ∆ |D+1(sH , D) < D}, (22)

Dmax(sL) ≡ max{D ∈ ∆ |D+1(sL, D) < Dmax(sH)}. (23)

Thus, if D exceeds Dmax(sH) at sH , the amount of debt in the next period is greater

than or equal to D. Similarly, if D exceeds Dmax(sL) at state sL, the next period’s

debt is greater than or equal to Dmax(sH). The following lemma demonstrates that if

D > Dmax(sL), then D+1(sL, D) ≥ D. As a result, once D exceeds Dmax(s) at each s, D

will never decrease.
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Lemma 3. If D > Dmax(sL), then D+1(sL, D) ≥ D.

Proof. Let D > Dmax(sL), and suppose, for the sake of contradiction, that D+1(sL, D) <

D. Then,

D+1(sL, D+1(sL, D)) < D+1(sL, D).

However, since D > Dmax(sL), D+1(sL, D) ≥ Dmax(sH). By the definition of Dmax(sH),

we have

D+1(sH , D+1(sL, D)) ≥ D+1(sL, D).

We also have

D+1(sH , D+1(sL, D)) ≤ D+1(sL, D+1(sL, D)).

Combining these inequalities, we obtain

D+1(sL, D) ≤ D+1(sH , D+1(sL, D)) ≤ D+1(sL, D+1(sL, D)) < D+1(sL, D),

which is a contradiction.

We can confirm that Dmax(s) < ∞ as follows. For D > D̄, it is obvious that, for any

b ≤ maxk{F (s, k)−Rk}, the debt never decreases over time, i.e., D+1 = (1+r)(D−b) > D.

Thus, there exists Dmax(sH) such that Dmax(sH) ≤ D̄ <∞. As Dmax(sH) <∞, it follows

from (22)-(23) that Dmax(sL) ≤ Dmax(sH).

6 Equilibrium of the discrete model

In this section, we assume that the interest rate in the debt contract is equal to the market

rate for the risk-free bond:

β =
1

1 + r
. (24)

As discussed in Section 4.3, it simplifies the analysis on the equilibrium dynamics in

our model. Note, however, that even under assumption (24), the bank can still make

the expected payoff nonnegative, by adjusting the initial amount of the principal of the

loan.15 In Sections 6.1, 6.2, and 6.3, we characterize the equilibrium, taking the existence

15 The initial principal of the debt D0 may not be fully repaid in equilibrium, so that the expected PDV

of repayments, d(s0, D0) ≡ E0

P∞
t=0 β

tbt, may be smaller than D0. Let I0 denote the initial amount of

lending. The zero profit condition for the bank is satisfied if the contractual amount of initial debt, D0, is

set as

I0 = d(s0, D0).
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of an equilibrium as given. In Section 6.4, we prove the existence. In Section 6.5 we

show numerical results. There, we also consider the case where β > 1
1+r and confirm the

robustness of the results.

6.1 The repayment in the case of small D

Two working assumptions: In Sections 6.1 and 6.2, we proceed by making the fol-

lowing two assumptions. They are verified later in Lemma 14 in Section 6.4. All proofs

are provided in the Appendix.

Assumption 2. For D < Dmax(s), V e(s,D + δ) ≤ V e(s,D)− δ.

Assumption 3. For all s and D ≥ δ, b(s,D) satisfies

b(s,D) ≥ δ. (25)

We first characterize the equilibrium repayment function b(s,D) for D ≤ Dmax(s).

Lemma 4. For all D ≥ 0, d(s,D + δ) ≤ d(s,D) + δ.

Lemma 5. For D ≤ Dmax(s), b(s,D) = b̄(s,D), where b̄(s,D) is the maximum feasible

value, i.e., b̄(s,D) = max{b | b ∈ Γ(s,D)}. It also holds that k(s,D) > knpl(s) for

D ≤ Dmax(s).

Lemma 5 directly implies the following corollary.

Corollary 6. If (s,D) is a state such that k(s,D) = k∗(s), then

b(s,D) = min {D, b∗(s,D)},

where

b∗(s,D) = max
n∈Z

D − βnδ,

s.t. D − βnδ ≤ F (s, k∗(s))−Rk∗(s).

Now, we define

f(s, k) ≡ F (s, k)−Rk −G(s, k),

δf ≡ max
k∈∆k(s), knpl(s)≤k≤k∗(s)

F ′(s, k)−R,

δk ≡ max{k′ − k | k ∈ ∆k(s), k′ ∈ ∆k(s),

knpl(s) ≤ k < k′ < k∗(s), |f(s, k)− f(s, k′)| = βδ},

δg ≡ max{G(s, k′)−G(s, k) | k ∈ ∆k(s), k′ ∈ ∆k(s),

knpl(s) ≤ k < k′ < k∗(s), |f(s, k)− f(s, k′)| = βδ}.

Note that δf = O(1), δk = O(δ), and δg = O(δ). Then, the following lemma holds.
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Lemma 7. For (s,D) such that knpl(s) < k(s,D) < k∗(s), it holds that 0 ≤ F (s, k(s,D))−
Rk(s,D)− b(s,D) < ξ + βδ, where ξ = δfδk.

As ξ = O(δ), Corollary 6 and Lemma 7 implies that b(s,D) ≈ min{D, F (s, k(s,D))−
Rk(s,D)} for small δ. This means that the optimal contract involves backloaded payment

to the firm; that is, the firm repays debt as fast as possible by setting its dividend at

almost zero, i.e., b ≈ min{D, F (s, k)−Rk}, when D is smaller than or equal to Dmax(s).

6.2 Equilibrium at large D

Here, we demonstrate that when D is large so that D > Dmax(s), the equilibrium exhibits

the feature that we call the NPL equilibrium. For that, the minimum unit δ is sufficiently

small such that the following assumption is satisfied.

Assumption 4. The value of δ and the function G(s, k) satisfy

min
s

Gnpl(s) >
ξ + β(δ + δg)

1− β
,

where ξ = δfδk.

Lemma 8. For k(s,D) < k∗(s), the binding no-default constraint implies that

V (s,D)− δg < G(s, k(s,D)) ≤ V (s,D).

Proof. The first inequality holds because otherwise the bank can obtain a positive gain by

changing k(s,D) to k′, where k′ > k(s,D) and |f(k(s,D))− f(k′)| = βδ.

Lemma 9. For all D > Dmax(s), it holds that k(s,D) = knpl(s).

Proposition 10. For all (s,D) with D > Dmax(s), d(s,D) = dnpl(s), k(s,D) = knpl(s),

b(s,D) = bnpl(s), and V (s,D) = Gnpl(s).

This proposition16 is similar to Proposition 2 in Section 4.2, but stronger because

Dmax(s) ≤ D̄. Once D exceeds Dmax(s) at any s, the contractual amount of debt will

16 In Proposition 10, we have assumed that the parameter values are restricted such that knpl(s) is

defined by knpl(s) ≡ arg maxk∈∆k(s) F (s, k)−Rk −G(s, k). It is generalized as follows, in the case where

knpl(sL) is defined by knpl(sL) = max{k ∈ ∆k(sL)| G(s, kL) ≤ β[πLLG(sL, k) + πLHG(sH , k
npl(sH))]}:

We define V npl(s) by

V npl(sH) = Gnpl(sH),

V npl(sL) = βE[V npl(s+1)|s = sL].

Then, we redefine bnpl(s) by bnpl(s) = F (s, knpl(s)) − Rknpl(s) − Gnpl(s) + βE[V npl(s+1)|s]. Then, the

modified version of Proposition 10 states: For all (s,D) with D > Dmax(s), d(s,D) = dnpl(s), k(s,D) =

knpl(s), b(s,D) = bnpl(s), and V (s,D) = V npl(s). The proof of the modified version is similar to that of

Proposition 10.
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keep on growing and the constraint b ≤ D will never bind. Thus, D becomes irrelevant for

the choice of k and b, and the equilibrium variables depend solely on the exogenous state

s, given as the NPL equilibrium. The intuition is that when D is larger than Dmax(s),

it becomes impossible to pay back D in full, and thus the contractual amount of debt

becomes payoff irrelevant. It follows that the lender can no longer commit to any future

repayment plans. The loss of the banks credibility leads to an inefficient outcome referred

to as the NPL equilibrium.

6.3 Characterization of the equilibrium

Here, we summarize the analytical results obtained for the discrete model with 1+r = β−1.

First, there exist endogenously determined thresholds, Dmax(s), which are defined by (22)

and (23).

Define Dmin(sL) by

Dmin(sL) = max
{
D ∈ ∆ | ∀D′ ≤ D,D+1(sL, D′) < D′

}
.

Since D+1(sH , D) ≤ D+1(sL, D) for all D, once D becomes sufficiently small that D ≤
Dmin(sL), D declines over time thereafter, regardless of the realization of the exogenous

state s.

Thus, if the initial debt D0 satisfies D0 ≤ Dmin(sL), there is no chance that the

economy will fall into the NPL equilibrium. In this case, the equilibrium dynamics are

qualitatively the same as those of the AH model. The borrower repays as much debt

as possible in every period by setting dividend (almost) zero, i.e., F (s, k) − Rk − b ≈ 0

(Lemma 7), where the qualification “almost” is required because of the discretization.

Functions k(s,D) and V (s,D) are both non-increasing in D.17 As the current debt D

satisfies D ≤ Dmin(sL), the next period debt D+1 is smaller than D. Thus, along the

equilibrium path, Dt+1 = β−1[Dt − b(st, Dt)] converges to 0 within finite periods. When

D = 0, the bank takes 0 because b ≤ D binds at D = 0, and the problem (for the bank) is

to maximize the firm’s profits by selecting k = k∗(s) = arg maxk F (s, k)− Rk. Thus, the

economy converges to a first-best allocation, {D, k} = {0, k∗(s)}, within finite periods. In

this case, the state variable, D, remains payoff-relevant along the whole equilibrium path.

If the initial debt satisfies D0 ≥ Dmax(sH), debt Dt always increases regardless of the

exogenous state s, i.e., Dt+1 ≥ Dt with probability one for all t. Then, Dt is no longer

a payoff-relevant state variable, and the bank is unable to make a commitment to future

repayment plans. As a result, the economy falls into the NPL equilibrium: {k(s,D),

b(s,D), d(s,D), V (s,D)} = {knpl(s), bnpl(s), dnpl(s), V npl(s)}. In the NPL equilibrium,

the firm’s output is “minimized” in the sense that knpl(s) = minD∈∆ k(s,D).

17 First, Lemma 14 in Section 6.4 implies that V (s,D) is non-increasing in D. Second, k(s,D) is

non-increasing in D, because k(s,D) = max{k ∈ ∆k(s) |V (s,D) ≥ G(s, k)} and V (s,D) is non-increasing.
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For initial debt D0 in the intermediate region, Dmin(sL) < D0 ≤ Dmax(sH), the

economy may end up with either the first best or NPL equilibrium. Both can occur with a

positive probability. While D is in this region, the dividend to the firm is F (s, k)−Rk−b ≈
0 (Lemma 7). D remains to be payoff-relevant.

6.4 Existence of equilibrium

In this subsection, we demonstrate the existence of an equilibrium, which is characterized

as a fixed point of an operator, T , on the functions of (s,D). As the space for (s,D) is

discrete and finite, the existence of an equilibrium is proved by finding a fixed point of the

operator T in a finite-dimensional vector space.

Define the operator T by

(d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) = T (d(n)(s,D), V (n)(s,D), D̄(n)(s)),

where (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) is generated from (d(n)(s,D), V (n)(s,D), D̄(n)(s)),

as follows. Define Γ(n+1)(s,D) by

Γ(n+1)(s,D) ≡{b ∈ ∆b(s,D) | ∃k ∈ ∆k(s) s.t.

D+1 = min{Nmaxδ, nδ[(1 + r)(D − b)]},
F (s, k)−Rk − b+ βEV (n)(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0}.

Given state (s,D) and expectations (V (n)(s,D), d(n)(s,D)), the bank solves

d(n+1)(s,D) = max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, D+1). (26)

Denote by Σ(n+1)(s,D) the set of (b,D+1) that solves the maximization in (26). The bank

decides k and V (n+1)(s,D) by solving the following problem.

V (n+1)(s,D) = max
k∈∆k(s), (b,D+1)∈Σ(n+1)(s,D)

F (s, k)−Rk − b+ βEV (n)(s+1, D+1), (27)

subject to

F (s, k)−Rk − b+ βEV (n)(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

Let Λ(n+1)(s,D) denote the set of (k, b,D+1) that solves the maximization in (27).

The equilibrium values of (k, b,D+1) are selected as follows. First, b(n+1)(s,D) and

D
(n+1)
+1 (s,D) are determined as

b(n+1)(s,D) = max
(k,b,D+1)∈Λ(n+1)(s,D)

b, (28)

D
(n+1)
+1 (s,D) = min{Nmaxδ, nδ((1 + r)[D − b(n+1)(s,D)])}. (29)
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Then, k(n+1)(s,D) is decided as

k(n+1)(s,D) = max
(k, b(n+1)(s,D), D

(n+1)
+1 (s,D))∈Λ(n+1)(s,D)

k,

and D̄(n+1)(s) is provided by

D̄(n+1)(sH) = max
{
D ∈ ∆ |D(n+1)

+1 (sH , D) < D̄(n)(sH)
}
,

D̄(n+1)(sL) = max
{
D ∈ ∆ |D(n+1)

+1 (sL, D) < D̄(n)(sH)
}
.

Define V ∗H ≡
1

1−β [F (sH , k∗(sH))−Rk∗(sH)].

We set the initial values (D̄(0)(s), d(0)(s,D), V (0)(s,D)) as follows.

D̄(0)(s) = D̄(0) ≡ V ∗H −Gnpl(sH),

d(0)(s,D) =

{
D for D ≤ D̄(0),

dnpl(s) for D > D̄(0),

V (0)(s,D) =

{
V ∗H −D for D ≤ D̄(0),

Gnpl(s) for D > D̄(0).

Now, the existence of a fixed point of operator T is established by demonstrating the

convergence of the sequence {d(n), V (n), D̄(n)}∞n=0.

Theorem 11. There exists a fixed point (d(s,D), V (s,D), Dmax(s)) of the operator T ,

that is, (d, V,Dmax) = T (d, V,Dmax).

This fixed point is an equilibrium of the economy. The proof of this theorem is as

follows. The following lemmas demonstrate that (d(n)(s,D), V (n)(s,D), D̄(n)(s)) satisfies

(dnpl(s), Gnpl(s), dnpl(s)) ≤ (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s))

≤ (d(n)(s,D), V (n)(s,D), D̄(n)(s))

for D > dnpl(s), and that

(0, Gnpl(s), dnpl(s)) ≤ (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s))

≤ (d(n)(s,D), V (n)(s,D), D̄(n)(s))

for D ≤ dnpl(s). Thus, the sequence
{
d(n)(s,D), V (n)(s,D), D̄(n)(s)

}∞
n=0

at any fixed

(s,D) converges pointwise, because it is a weakly decreasing sequence of real numbers,

which is bounded from below: ∃(d(s,D), V (s,D), Dmax(s)) such that

(d(n)(s,D), V (n)(s,D), D̄(n)(s))→ (d(s,D), V (s,D), Dmax(s))

as n→∞. This (d(s,D), V (s,D), Dmax(s)) is a fixed point of the operator T by construc-

tion.

The proof is by induction. The first step of the induction is provided by the following

lemma.
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Lemma 12. Denote (d(1)(s,D), V (1)(s,D), D̄(1)(s)) = T (d(0)(s,D), V (0)(s,D), D̄(0)(s)).

Let (b(1)(s,D), k(1)(s,D)) be the value of (b, k) that solves (26) and (27) with n = 0.

Then, (d(1)(s,D), V (1)(s,D), D̄(1)(s), b(1)(s,D), k(1)(s,D)) satisfies

(i) d(1)(s,D + δ) ≤ d(1)(s,D) + δ,

(ii) dnpl(s) ≤ d(1)(s,D) ≤ d(0)(s,D) for D > dnpl(s), and 0 ≤ d(1)(s,D) ≤ d(0)(s,D)

for D ≤ dnpl(s),

(iii) ∀D > D̄(1)(s), d(1)(s,D) = dnpl(s), V (1)(s,D) = V npl(s), b(1)(s,D) = bnpl(s),

k(1)(s,D) = knpl(s),

(iv) V (1)(s,D + δ) ≤ −δ + V (1)(s,D) for D < D̄(1)(s),

(v) ∀(s,D), Gnpl(s) ≤ V (1)(s,D) ≤ V (0)(s,D),

(vi) dnpl(s) < D̄(1)(s) < D̄(0).

The second step of the induction is provided by the following lemma.

Lemma 13. Denote (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) = T (d(n)(s,D), V (n)(s,D), D̄(n)(s)).

Let (b(n+1)(s,D), k(n+1)(s,D)) be the value of (b, k) that solves (26) and (27). Suppose

that (d(n)(s,D), V (n)(s,D), D̄(n)(s), b(n)(s,D), k(n)(s,D)) satisfies

(i’) d(n)(s,D + δ) ≤ d(n)(s,D) + δ,

(ii’) dnpl(s) ≤ d(n)(s,D) ≤ d(n−1)(s,D) for D > dnpl(s), and 0 ≤ d(n)(s,D) ≤ d(n−1)(s,D)

for D ≤ dnpl(s)

(iii’) ∀D > D̄(n)(s), d(n)(s,D) = dnpl(s) and V (n)(s,D) = V npl(s),

(iv’) V (n)(s,D + δ) ≤ −δ + V (n)(s,D) for D < D̄(n)(s),

(v’) ∀(s,D), Gnpl(s) ≤ V (n)(s,D) ≤ V (n−1)(s,D),

(vi’) 0 < D̄(n)(s) ≤ D̄(n−1)(s).

Then, (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s), b(n+1)(s,D), k(n+1)(s,D)) satisfies

(i) d(n+1)(s,D + δ) ≤ d(n+1)(s,D) + δ,

(ii) dnpl(s) ≤ d(n+1)(s,D) ≤ d(n)(s,D) for D > dnpl(s), and 0 ≤ d(n+1)(s,D) ≤
d(n)(s,D) for D ≤ dnpl(s),

(iii) ∀D > D̄(n+1)(s), d(n+1)(s,D) = dnpl(s) and V (n+1)(s,D) = V npl(s),

(iv) V (n+1)(s,D + δ) ≤ −δ + V (n+1)(s,D) for D < D̄(n+1)(s),
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(v) ∀(s,D), Gnpl(s) ≤ V (n+1)(s,D) ≤ V (n)(s,D),

(vi) 0 < D̄(n+1)(s) ≤ D̄(n)(s).

In Sections 6.1 and 6.2, we have assumed Assumptions 2 and 3 to establish some

equilibrium properties. The next lemma demonstrates that those assumptions are indeed

satisfied by the equilibrium constructed as the fixed point of T .

Lemma 14. For D ≤ Dmax(s), V (s,D+δ) ≤ V (s,D)−δ. For all D ≥ δ, b(s,D) satisfies

b(s,D) ≥ δ.

6.5 Numerical experiment

In this subsection, we report numerical solutions to our model. We obtain a fixed point of

operator T , defined in Section 6.4, by iterating (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) =

T (d(n)(s,D), V (n)(s,D), D̄(n)(s)). The numerical examples here illustrate the properties

of our model discussed in previous subsections. Furthermore, they demonstrate that our

model generates a debt Laffer curve; that is, the bank’s value d(s,D) has an inverted-U

shaped relationship with the contractual amount of debt D.

We assume the following functional forms: F (s, k) = sAkα, and G(s, k) = Bk. The

parameter values are set as shown in Table 1.18 Our purpose here is to confirm the

properties of the model, and thus the parameter values are set somewhat arbitrarily,

without much empirical grounding.19

6.5.1 Baseline case with 1 + r = β−1

Figure 2 plots the bank’s value function, d(s,D), the firm’s value function, V (s,D), the

schedule for the working capital provision, k(s,D), and the repayment schedule, b(s,D).

The reader may be puzzled about the discrete jumps in these functions. These jumps at

smaller values of D are due to discretization, e.g., b = (m − βn)δ, where D = mδ and

D+1 = nδ, with n,m ∈ Z.20 In addition, some jumps at larger values of D are caused by

the discontinuity at the boundary of the NPL equilibrium, as discussed in Section 4.3.

The bank’s value function d(s,D) in Figure 2 displays a debt Laffer curve for each s.

For a sufficiently small value of D, d(s,D) = D, that is, D is repaid in full with probability

18We set δ = 0.002 for discretization of D, and use 5 grid points for k.

19 In particular, the value for α might appear too high. Note, however, that α does not correspond to

the capital share here. To be specific, suppose that k finances the capital input K and the production

function exhibits decreasing-return to scale, i.e., Y = KβLγ , where β + γ < 1 and L is the labor input.

The revenue of the firm is then given by

F (K) = max
L

KβLγ − wL = CK
β

1−γ ,

where C > 0 is a constant and β
1−γ < 1. Then, α in our model is given by α ≡ β

1−γ , which is greater than
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Table 1: Parameter values

Description Value

A Normalization 0.1

B Outside option 0.1

α Production function 0.8

R Rental rate of capital 0.1

β Discount factor 0.96

sH , sL Productivity 1.15, 0.85

πHH , πLL Transition probability 0.9, 0.9

one, and the economy never falls into the NPL equilibrium. When D is in this region,

working capital is provided at the first-best level, k(s,D) = k∗(s), and the firm repays

as much as possible to the bank: b(s,D) ≈ min(D,F (s, k∗(s))− Rk∗(s)). As D becomes

larger, k(s,D) and b(s,D) start to decrease with D, and d(s,D) exhibits an inverted-U

shape in D. When D exceeds the threshold, the economy falls into the NPL equilibrium. In

this example, d(sH , D) = dnpl(sH) for D > 0.252 and d(sL, D) = dnpl(sL) for D > 0.244.

We should note that in this example, the difference between knpl(s) and k∗(s) is very

large. It may be too large to be justified by evidence. One reason for this is that the NPL

equilibrium continues permanently under our assumption that debt restructuring never

occurs. In Section 7, we will see that the difference between k∗(s) and k(s,D) for large D

becomes much more modest with stochastic debt restructuring.

6.5.2 Case with 1 + r > β−1

For ease of theoretical analysis, we have so far assumed that 1 + r = β−1. Here, we

numerically examine the case where 1 + r > β−1. Specifically, we set r = 0.05, and

β = 0.96. All other parameters are given the same values as before. The bank’s value

function, d(s,D), the firm’s value function, V (s,D), the schedule for working capital

provision, k(s,D), and the repayment schedule, b(s,D), in this case are plotted in Figure

3.

the capital share.

20 To illustrate, suppose that b is selected as a function of D = mδ to solve b = maxn(m− βn)δ subject

to b < C. Suppose, in addition, that δ = 1, β = 0.9, and C is an integer. Then, D = m, D+1 = n, and the

solution to the above problem becomes

b(D) = C − 0.9 + 0.1x,

where x = D − C mod 9, that is, x is an integer with 0 ≤ x ≤ 8 and there exists an integer i such that

D = C + 9i+ x. Thus, b(D) has discrete jumps at D = C + 9i, where i = 1, 2, 3, · · · .
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Figure 2: The case with 1 + r = β−1.

Figure 3 also demonstrates the debt Laffer curve relationship between the bank’s value

and the contractual amount of debt. Major differences from Figure 2 are that b(s,D) ≈ 0

and d(s,D) > D for small values of D. Setting b(s,D) ≈ 0 is optimal, because with

1 + r > β−1, the bank can increase d(s,D) by delaying the repayment when D is small, as

discussed in Section 4.3. As a result, d(s,D) > D for small values of D. Except for these

two differences, the qualitative features of the model with 1 + r > β−1 are the same as the

model with 1 + r = β−1. Here, the NPL equilibrium occurs when D > 0.218 for s = sH ,

and when D > 0.210 for s = sL.

7 Discrete model with stochastic debt restructuring

In the baseline model, debt restructuring is prohibited. We modify the model in this

section such that debt restructuring is feasible with some friction. For simplicity, we

adopt a reduced-form approach: In each period t, the bank may be able to reduce the

contractual amount of debt Dt. However, this option of debt restructuring arrives with

an exogenously given probability p ∈ (0, 1) in each period. With this option in hand, the

bank can reduce Dt to any value D ∈ [0, Dt]. The probability p is a fixed parameter and

represents the friction in debt restructuring.

When the bank with contractual amount of debt Dt restructures debt, it reduces Dt

to D̂(s,Dt) defined by

D̂(s,Dt) = arg max
0≤D≤Dt

d(s,D).
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Figure 3: The case with 1 + r > β−1.

Here, d(s,D) is the PDV of repayments, given as the solution to (33) below. Clearly,

D̂(s,D) = D for a small value of D, because the bank has no incentive to reduce the debt

if it is sufficiently small.

Definitions: Given the possibility of debt restructuring, we modify the formulation of

the discrete model, because the NPL equilibrium, {knpl(s), bnpl(s), dnpl(s), Gnpl(s)} now

depends on when and by how much debt is reduced. The grid points for D, D+1, and k

are the same as in the previous sections, but we modify the grid points for b, ∆b(s,D).

Take as given the beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}, where V e(s,D) describes the

expected value of the firm, kenpl(s) the expected value of working capital in the NPL

equilibrium, and D̂e(s,D) the expected amount of debt after debt restructuring. We use

the same parameter values as in the baseline model. For the probability p of a certain size,

the candidate for knpl(s) makes the enforcement constraint nonbinding, that is, k̃npl(s) ≡
arg maxk∈∆k(s) F (s, k)−Rk −G(s, k) does not satisfy

G(s, k) > βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s], (30)

where we define V npl(s+1) by

V npl(s) = F (s, knpl(s))−Rknpl(s)− bnpl(s) + βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s],

and De
+1 = D̂e(s+1, D+1).21 Therefore, not as in the baseline case, we define knpl(s) for

21Note that in the NPL equilibrium where D > Dmax(s), D̂(s,D) is independent of D, i.e., D̂(s,D) =
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the case where k̃npl(s) does not satisfy (30) as

knpl(s) = max{k ∈ ∆k(s)| G(s, k) ≤ βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s]. (31)

Note that knpl(s) depends on the given beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}. Of course,

knpl(s) = kenpl(s) must hold in equilibrium. We define bnpl(s) by

bnpl(s) = F (s, knpl(s))−Rknpl(s) + βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s]−Gnpl(s),

in the case where knpl(s) = k̃npl(s), and by

bnpl(s) = F (s, knpl(s))−Rknpl(s), (32)

in the case where knpl(s) is defined by (31).

Now, we define the grid points for b as

∆b(s,D) =
{
b ∈ R | ∃D+1 ∈ ∆+1 s.t. b = D − 1

1 + r
D+1, and b ≥ 0

}
∪ {bnpl(s)}.

As stated above, the NPL equilibrium, {knpl(s), bnpl(s), dnpl(s), V npl(s)}, is defined given

the beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}.

The bank’s problem: Given beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}, the bank solves

d(s,D) = max
b∈Γ(s,D)

b+ βE[(1− p)d(s+1, D+1) + pd(s+1, D̂
e
+1)], (33)

where

Γ(s,D) = {b ∈ ∆b(s,D) | ∃k ∈ ∆k(s) s.t.

D+1 = min{Nmaxδ, (1 + r)(D − b)},
F (s, k)−Rk − b+ βE[(1− p)V e(s+1, D+1) + pV e(s+1, D̂

e
+1)] ≥ G(s, k),

F (s, k)−Rk − b ≥ 0}.

Let Σ(s,D) denote the set of (b,D+1) that solves the maximization problem in (33). The

bank decides on k and V (s,D) by solving the following problem:

V (s,D) = max
k∈∆k(s), (b,D+1)∈Σ(s,D)

F (s, k)−Rk − b

+ βE[(1− p)V e(s+1, D+1) + pV e(s+1, D̂
e
+1)], (34)

subject to

F (s, k)−Rk − b+ βE[(1− p)V e(s+1, D+1) + pV e(s+1, D̂
e
+1)] ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

D̂(s), which is defined by D̂(s) ≡ arg maxD∈∆ d(s,D). Thus, for D > Dmax(s), D̂e(s,D) should also be

independent of D.
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Let Λ(s,D) denote the set of (k, b,D+1) that solves the maximization problem in (34).

The equilibrium values of (k, b,D+1) are determined as follows. First, b(s,D) and

D+1(s,D) are given by

b(s,D) = max
(k,b,D+1)∈Λ(s,D)

b, (35)

D+1(s,D) = min{Nmaxδ, (1 + r){D − b(s,D)}}. (36)

Then, k(s,D) is determined by

k(s,D) = max
(k,b(s,D),D+1(s,D))∈Λ(s,D)

k,

D̂(s,D) by

D̂(s,D) = arg max
D′≤D

d(s,D′),

and dnpl(s) is

dnpl(s) = bnpl(s) + βE[(1− p)dnpl(s+1) + pd(s+1, D̂
e
+1)].

For consistency, we require that

V (s,D) = V e(s,D), knpl(s) = kenpl(s), and D̂(s,D) = D̂e(s,D). (37)

7.1 Numerical experiment

Here, we report the results of numerical experiments for the extended model. Except for

the probability of debt restructuring, p, all parameter values and the functional forms are

set in the same way as in the baseline model with 1 + r > β−1.

Figure 4 plots the main equilibrium functions for the case with p = 0.2. In this case,

knpl(s) is defined by (31) and bnpl(s) is defined by (32) for both sH and sL. The bank’s

value function d(s,D) increases with D when D is small, and stays constant when D is

large. Thus, the debt-Laffer curve is not inverted U shaped, but inverted L shaped. The

economy enters the NPL equilibrium when D > 0.234 for s = sH and when D > 0.226 for

s = sL. Thus, the thresholds for the NPL equilibrium become larger than in the baseline

case, where the NPL equilibrium arises when D > 0.218 for s = sH and D > 0.210 for

s = sL. In addition, d(s,D) becomes larger for each s and D compared to the baseline

case. These are intuitive results, because the possibility of debt restructuring increases

the firm’s value, relaxes the borrowing constraint, and thus raises the amount of debt that

the firm can repay. In addition, the difference between k∗(s) and knpl(s) becomes more

modest than in the baseline case: knpl(sH)/k∗(sH) = 0.313 and knpl(sL)/k∗(sL) = 1.

Figure 5 shows how the equilibrium is affected by the possibility of debt restructuring,

where we examine three values of p: 0, 0.002, 0.2. The left panels show the equilibrium
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Figure 4: The case with frictional debt restructuring (p = 0.2).

functions corresponding to state sH , and the right panels show those corresponding to

state sL. Although knpl(s) is defined by (31) and bnpl(s) is defined by (32) for both sH

and sL in the case with p = 0.002, the variables in this case are almost the same as

those in the baseline case with p = 0. They show that an increase in the possibility of

debt restructuring leads to upward shifts in the bank’s value function, the working capital

provision, and the firm’s value function.

8 Concluding remarks

In this paper, a model of long-term debt contract has been analyzed and it has been

demonstrated that nonperforming loans can cause persistent inefficiency. To the extent

that debt restructuring is delayed due to political and/or bargaining frictions, a borrower’s

debt may grow to an unrepayable level. Without reducing the debt to some repayable level,

the lender loses its credibility with respect to any future repayment plans it may offer to

the borrower. This impairment of the lender’s credibility discourages the borrower from

expending effort, leading to a decrease in the loan demand and persistent inefficiency.

Although the optimal contract features a backloaded payoff to the borrower until the

amount of debt becomes sufficiently small, it is no longer possible to provide incentives

dynamically in our model when the debt becomes “too large.” Our model generates

a debt Laffer curve; that is, the payoff to the lender, which is the present discounted

value of repayments, can decrease with the contractual amount of debt if it exceeds some

threshold value. In the baseline case, we assume for simplicity that debt restructuring is

not possible. However, we extend the model to allow for stochastic debt restructuring, and
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Figure 5: Frictional debt restructuring (p = 0.0, 0.002, 0.2).

confirm that the main results remain invariant qualitatively. The efficiency of equilibrium

can be improved if debt restructuring is facilitated by policy measures.

This paper has a number of limitations. As the focus of our analysis is solely theoret-

ical, the model used is simplistic and stylized. Thus, it needs further elaboration to be

applicable to real episodes of financial crises and business fluctuations; for instance, the

(possibility of) secular stagnation in the aftermath of the Global Financial Crisis. Bar-

gaining frictions of debt restructuring could be modeled more explicitly, as opposed to

the reduced-form approach adopted in this paper. All these extensions are left for future

research.
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A Proof of Proposition 2

In this appendix, we characterize the NPL equilibrium in the continuous-value model.

First, we prove the following lemma.

Lemma 15. If k(s,D) < k∗(s) ≡ arg maxk F (s, k)−Rk, then

βEG(s+1, k(s+1, D+1)) ≤ G(s, k(s,D)),

V (s,D) = G(s, k(s,D)).

Proof. For any s, any b that is feasible for k < knpl(s) is also feasible for k = knpl(s).

Thus, k(s,D) ≥ knpl(s). Suppose βEG(s+1, k(s+1, D+1)) > G(s, k(s,D)). Then, there

exists ε > 0 such that k = k(s,D) + ε (≤ k∗(s)) is feasible under the borrowing constraint

(F (s, k) − Rk − b + βEV e(s+1, D+1) ≥ G(s, k)), because V e(s,D) = V (s,D) ≥ G(s,D)

in equilibrium. Then, Assumption 1 implies that the equilibrium value of k should be

k(s,D) + ε, not k(s,D). This is a contradiction. Therefore, βEG(s+1, k(s+1, D+1)) ≤
G(s, k(s,D)). Suppose that V (s,D) > G(s, k(s,D)). Then, there exists ε > 0 such that

k = k(s,D) + ε (≤ k∗(s)) is feasible. As above, Assumption 1 implies that k = k(s,D) + ε

should be the equilibrium value. This is a contradiction. Thus, V (s,D) = G(s, k(s,D))

in equilibrium.

Since D > D̄ implies that D+1 = (1 + r)(D − b) > D for any feasible b, the lender’s

commitment constraint (b ≤ D) never binds for D. Thus, the bank’s problem can be

rewritten as

d(s,D) = max
b,k

b+ βEd(s+1, D+1) (38)

s.t. V = F (s, k)−Rk − b+ βEV e(s+1, D+1),

V ≥ G(s, k),

F (s, k)−Rk − b ≥ 0,

with the equilibrium conditions: V (s,D) = V e(s,D) and V e(s,D) ≤ Vmax, where

Vmax ≡
1

1− β
{F (sH , k∗(sH))−Rk∗(sH)}.

Lemma 16. Consider the case where D ≥ D̄. Suppose that F (s, k(s,D)) − Rk(s,D) −
b(s,D) > 0 for some (s,D). Then, k(s,D) = knpl(s) for the same (s,D).

Proof. The proof of this claim is by contradiction. Suppose that k(s,D) 6= knpl(s) for a

particular value of (s,D), for which F (s, k(s,D))−Rk(s,D)− b(s,D) > 0. Then, Lemma

1 implies k(s,D) > knpl(s). Define ε(s,D) ≡ F (s, k(s,D)) − Rk(s,D) − b(s,D). De-

fine kε(s,D) = max {k(s,D; ε), knpl(s)}, where k(s,D; ε) is the solution to F (s, k)−Rk−
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b(s,D) = 1
2ε(s,D).Obviously, kε(s,D) < k(s,D). Now, define bε(s,D) = min {b1(s,D), b2(s,D)},

where

b1(s,D) = F (s, kε(s,D))−Rkε(s,D),

and

b2(s,D) = max{b | F (s, kε(s,D))−Rkε(s,D)−b+βEV e(s+1, (1+r)(D−b)) ≥ G(s, kε(s,D))}.

Note that b2(s,D) = +∞ may be possible for some (s,D). Obviously, b1(s,D) > b(s,D),

because b1(s,D) = b(s,D) + 1
2ε when kε(s,D) = k(s,D; ε), and b1(s,D) > b(s,D) + 1

2ε

when kε(s,D) = knpl(s) > k(s,D; ε). Furthermore, it is easily confirmed that b2(s,D) >

b(s,D), because b2(s,D) is the maximum value of b that satisfies

b ≤ F (s, kε(s,D))−Rkε(s,D)−G(s, kε(s,D)) + βEV e(s+1, (1 + r)(D − b)),

and b(s,D) is the maximum value of b that satisfies

b ≤ F (s, k(s,D))−Rk(s,D)−G(s, k(s,D)) + βEV e(s+1, (1 + r)(D − b)),

where F (s, k) − Rk −G(s, k) is decreasing in k for k > knpl(s). Here, we used k(s,D) >

knpl(s) to show b2(s,D) > b(s,D). Since b1(s,D) > b(s,D) and b2(s,D) > b(s,D), it

is obvious that bε(s,D) > b(s,D) for the particular (s,D). Since {bε(s,D), kε(s,D)}
satisfies all constraints of (38), it is feasible. As formally stated in the following Claim

1, {bε(s,D), kε(s,D)} should be the solution to (38) instead of {b(s,D), k(s,D)}, and

this result contradicts the fact that {b(s,D), k(s,D)} is the solution to (38). Therefore,

k(s,D) = knpl(s) should hold, if F (s, k(s,D))−Rk(s,D)− b(s,D) > 0.

The reason why {bε(s,D), kε(s,D)} should be the solution to (38) is formally described

in the following Claim 1. First, we define the sequential problem corresponding to the

recursive problem (38), as follows. For (s0, D0) = (s,D),

d∗(s,D) = max
{bt,kt}∞t=0

E0

[ ∞∑
t=0

βtbt

]
, (39)

s.t. F (st, kt)−Rkt − bt + βEtV e(st+1, Dt+1) ≥ G(st, kt),

F (st, kt)−Rkt − bt ≥ 0,

Dt+1 = (1 + r)(Dt − bt).

We know that the solution to (38) is {b(s,D), k(s,D)} and d(s,D) is written as

d(s,D) = E0

[ ∞∑
t=0

βtb(st, D(st))

]
, (40)

where st = {s0, s1, s2, · · · , st}, s0 = s, s0 = {s}, D(s0) = D, and

D(st) = (1 + r){D(st−1)− b(st−1, D(st−1))}
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for t ≥ 1. We define dε(s,D) by

dε(s,D) = E0

[ ∞∑
t=0

βtbε(st, Dε(st))

]
, (41)

where Dε(s0) = D, Dε(st) = (1 + r){Dε(st−1) − bε(st−1, D
ε(st−1))} for t ≥ 1, and, for

t = 0, bε(s0, D(s0)) = bε(s,D) > b(s,D) for the particular (s,D) and

bε(st, Dε
t (s

t)) = b(st, D(st)), (42)

for t ≥ 1. Note that the right-hand side of (42) is b(st, D(st)), not b(st, Dε(st)). The claim

is as follows.

Claim 1. For the particular (s,D) where F (s, k(s,D))−Rk(s,D)− b(s,D) > 0, it must

be the case that d∗(s,D) ≥ dε(s,D) > d(s,D).

(Proof of Claim 1) We have shown that bε(s0, D(s0)) is feasible for the particular

(s0, D(s0)) = (s,D). For t ≥ 1, it is obvious that Dε(st) < D(st), because bε(s0, D0) >

b(s0, D0) for t = 0. As we assumed that V e(st, Dt) is a (weakly) decreasing function of

Dt, it is the case that

V e(st, Dε(st)) ≥ V e(st, D(st)).

Then, at the state (st, Dε(st)), the pair {b(st, D(st)), k(st, D(st))} is feasible as it satisfies

both constraints. (Note that this argument holds for all t, because the constraint, bt ≤ Dt,

never binds for Dt > D̄. ) Therefore, dε(s,D) is feasible and, by definition of d∗(s,D),

(39), it must be the case that d∗(s,D) ≥ dε(s,D). It is obvious that dε(s,D) > d(s,D),

from (40) and (41) by definition of bε(st, Dε(st)) and bε(s,D) > b(s,D) for the particular

(s,D). (End of the proof of Claim 1)

This claim contradicts the theorem of dynamic programing that the solutions to the re-

cursive problem (38) and the sequential problem (39) are identical, i.e., d(s,D) = d∗(s,D).

Thus, k(s,D) = knpl(s) should hold, if F (s, k(s,D))−Rk(s,D)− b(s,D) > 0.

For any s and D > D̄, we consider a stochastic sequence {st, kt, bt, Dt}, where kt =

k(st, Dt), bt = b(st, Dt), Dt = (1 + r)(Dt−1 − bt−1), s0 = s, and D0 = D, given that st is

an exogenous stochastic variable. We will prove k(s0, D0) = knpl(s0) in what follows.

For st = sH , we have the following lemma.

Lemma 17. Consider the case where D ≥ D̄. For all t ≥ 0, if st = sH , then

G(sH , k(sH , Dt)) > βEt[G(st+1, k(st+1, Dt+1)].

This inequality implies from Lemma 16 that k(sH , Dt) = knpl(sH) for all t.
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Proof. The latter half of the lemma is proven as follows. Lemma 15 states V (s,D) =

G(s, k), which implies that F (s, k) − Rk − b ≥ G(s, k) − βEG(s+1, k+1). The inequality

G(s, k) − βEG(s+1, k+1) > 0 implies that F (s, k) − Rk − b > 0, which implies that k =

knpl(s) by Lemma 16.

The proof of the inequality G(s, k)− βEG(s+1, k+1) > 0 is by contradiction. Suppose

that this inequality does not hold. Then, for s0 = sH , Lemma 15 implies

G(sH , k(sH , D0)) = βE0[G(s1, k(s1, D1))],

where D1 ≥ D0 as D0 ≥ D̄. Then, in the case where s1 = sH ,

G(sH , k(sH , D0)) < βG(sH , k(sH , D1)),

because obviously k(sH , D) > k(sL, D) for any D, G(s, k) > G(s, k′) for k > k′, and

G(sH , k) ≥ G(sL, k). AsG(sH , k(sH , D0)) ≥ Gnpl(sH), it is the case thatG(sH , k(sH , D1)) >

Gnpl(sH). This inequality implies that k(sH , D1) > knpl(sH). Then,

G(sH , k(sH , D1)) = βE1[G(s2, k(s2, D2))],

because it should be the case that k(sH , D1) = knpl(sH) and G(sH , k(sH , D1)) = Gnpl(sH)

ifG(sH , k(sH , D1)) > βE1[G(s2, k(s2, D2))]. Iterating this argument, it is easily shown that

for any integer t,

G(sH , k(sH , D0)) < βtG(sH , k(sH , Dt)).

This inequality holds for an arbitrarily large t, as the above iteration can continue indefi-

nitely, because Dt ≥ Dt−1 ≥ D̄ for any t, and the constraint, bt ≤ Dt, never binds. Then,

for a sufficiently large t,

G(sH , k(sH , Dt)) > β−tG(sH , k(sH , D0)) > Vmax,

which contradicts that k(sH , Dt) is the equilibrium value. Therefore, this lemma should

hold.

For st = sL, we have the following lemma.

Lemma 18. Consider the case where D ≥ D̄. For all t ≥ 0, if st = sL, then k(sL, Dt) =

knpl(sL).

Proof. If G(sL, k(sL, Dt)) > βEt[G(st+1, k(st+1, Dt+1))], the limited liability constraint is

nonbinding and k(sL, Dt) must be knpl(sL) = arg maxF (sL, k)−Rk −G(sL, k).

Suppose that G(sL, k(sL, Dt)) > βEt[G(st+1, k(st+1, Dt+1))] is not satisfied. Then,

Lemma 15 implies that G(sL, k(sL, Dt)) = βEt[G(st+1, k(st+1, Dt+1))]. In this case, since
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Lemma 17 implies that k(sH , Dt) = knpl(sH) for t ≥ 0, the following equation must hold

for all t ≥ 0:

G(sL, kLt ) = β[πLLG(sL, kLt+1) + πLHG
npl(sH)],

where πLL = Pr(st+1 = sL|st = sL), πLH = 1− πLL, and kLt = k(sL, Dt). Here, we define

k̄L as the fixed point of this equation, i.e., G(sL, k̄L) = β[πLLG(sL, k̄L) + πLHG
npl(sH)].

Let us consider what would happen if kL0 6= k̄L. If kL0 < k̄L, then the sequence {kLt }∞t=0

that satisfies the above equation and kLt ≥ 0 for all t cannot exist, because kLt be-

comes a negative number for a finite t. If kL0 > k̄L, then limt→∞ k
L
t = +∞, which

cannot satisfy the condition for an equilibrium: G(sL, kLt ) ≤ Vmax for all t. There-

fore, it must be that kLt = k̄L for all t. As we assumed (11) is satisfied by knpl(sL),

i.e., G(sL, knpl(sL)) ≥ βE[G(s+1, k
npl(s+1)|sL], it is the case that knpl(sL) ≥ k̄L. If

kLt < knpl(sL) for any t, Lemma 1 is violated, a contradiction. Therefore, it must be the

case that either G(sL, k(sL, Dt)) > βEt[G(st+1, k(st+1, Dt+1))] or k̄L = knpl(sL). Thus,

kLt = knpl(sL) for any D0 > D̄.

Lemmas 17 and 18 imply that k(s,D) = knpl(s) for any s and D, that satisfies D > D̄.

Since the no-default constraint is binding, V (s,D) = G(s, knpl(s)) = Gnpl(s) for all s and

D > D̄. The equilibrium condition implies that V e(s,D) = Gnpl(s). Thus, b(s,D) =

bnpl(s) and d(s,D) = dnpl(s).

B Proof of Lemma 4

There exists D+1 ∈ ∆ such that

d(s,D + δ) = b′ + βEd(s+1, D+1),

b′ = D + δ − βD+1.

Note that Assumption 3 implies that b′ ≥ δ. Consider b = D − βD+1. Then, b ≥ 0,

and therefore, b ∈ ∆b(s,D), while b may not be an element of ∆b(s,D + δ). It is easily

confirmed that b ∈ Γ(s,D). Thus,

d(s,D + δ) = b+ δ + βEd(s+1, D+1)

= δ + [b+ βEd(s+1, D+1)]

≤ δ + max
b̃∈Γ(s,D)

[b̃+ βEd(s+1, β
−1(D − b̃)]

= δ + d(s,D).

C Proof of Lemma 5

Suppose that b(s,D) is not the maximum feasible value. Then, b(s,D)+βδ ∈ Γ(s,D). We

compare d(s,D) and X(b(s,D) + βδ, s,D), where X(b, s,D) ≡ b+ βEd(s+1, β
−1[D − b]).
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Lemma 4 implies that

X(b(s,D) + βδ, s,D) = b(s,D) + βδ + βEd(s+1, β
−1(D − b(s,D))− δ)

= b(s,D) + βE{δ + d(s+1, β
−1(D − b(s,D))− δ)}

≥ b(s,D) + βEd(s+1, β
−1(D − b(s,D)))

= d(s,D) = max
b
X(b, s,D).

If X(b(s,D)+βδ, s,D) > d(s,D), it contradicts (16), which defines b(s,D). If X(b(s,D)+

βδ, s,D) = d(s,D), Assumption 2 implies that F (s, k(s,D))− Rk(s,D)− b(s,D)− βδ +

βEV e(s+1, D+1(s,D)− δ) ≥ F (s, k(s,D))−Rk(s,D)− b(s,D) +βEV e(s+1, D+1(s,D)) =

V (s,D). Then, b(s,D) + βδ should be the equilibrium value of b. This is a contradiction.

Therefore, b(s,D) is the maximum feasible value in Γ(s,D), i.e., b(s,D) = b̄(s,D).

Next, we prove k(s,D) > knpl(s) for D ≤ Dmax(s). For D ≤ Dmax(s), we have

V (s,D) ≥ Gnpl(s) + δ, as V (s,D) ≥ V (s,D + δ) + δ from Assumption 2 and V (s,D +

δ) ≥ Gnpl(s) due to Lemma 15 in Appendix A. Now, we prove k(s,D) > knpl(s) by

contradiction. Suppose that k(s,D) = knpl(s). Then, since (b(s,D), k(s,D)) satisfy the

above inequality and the limited liability constraint, we have

V (s,D) = F (s, knpl(s))−Rknpl(s)− b(s,D) + βEV (s+1, D+1(s,D)) ≥ Gnpl(s) + δ,

F (s, knpl(s))−Rknpl(s)− b(s,D) ≥ 0.

Pick knpl+(s) (> knpl(s)), which is defined by f(s, knpl(s)) − f(s, knpl+(s)) = βδ, where

f(s, k) ≡ F (s, k)−Rk −G(s, k). Then, knpl+(s) satisfies

F (s, knpl+(s))−Rknpl+(s)− b(s,D) + βEV (s+1, D+1(s,D)) ≥ G(s, knpl+(s)) + (1− β)δ,

F (s, knpl+(s))−Rknpl+(s)− b(s,D) ≥ 0.

Therefore, k(s,D) should be knpl+(s), not knpl(s), because knpl+(s) is feasible without

changing b(s,D) and D+1(s,D). This is a contradiction. Thus, we have demonstrated

that for D ≤ Dmax(s), k(s,D) > knpl(s).

D Proof of Lemma 7

Suppose that F (s, k(s,D)) − Rk(s,D) − b(s,D) ≥ ξ + βδ for k(s,D) ∈ (knpl(s), k∗(s)).

In this case, the bank can choose k̂ < k(s,D), where k̂ ∈ ∆k(s), so that F (s, k̂) −
Rk̂ − b(s,D) ≥ βδ. We know that F (s, k(s,D)) − Rk(s,D) − G(s, k(s,D)) − b(s,D) +

βEV e(s,D+1(s,D)) ≥ 0, where D+1(s,D) = β−1[D − b(s,D)]. As F (s, k)−Rk −G(s, k)

is strictly decreasing in k for k > knpl(s), it must be the case that

F (s, k̂)−Rk̂ −G(s, k̂) ≥ F (s, k(s,D))−Rk(s,D)−G(s, k(s,D)) + βδ.
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Thus, b̂ = b(s,D) + βδ satisfies

F (s, k̂)−Rk̂ − b̂ ≥ 0,

F (s, k̂)−Rk̂ − b̂−G(s, k̂) + βEV e(s+1, β
−1(D − b̂)) ≥ 0.

Then, b̂ = b(s,D) + βδ is feasible and Lemma 5 implies that b̂ should be the solution to

(16). This is a contradiction.

E Proof of Lemma 9

For any s and D > Dmax(s), we consider a stochastic sequence {st, kt, bt, Dt}, where

kt = k(st, Dt), bt = b(st, Dt), Dt = nδ[(1 + r)(Dt−1 − bt−1)], s0 = s, and D0 = D, given

that st is an exogenous stochastic variable.

First, we consider the case where s = sH . Suppose there exists D, which satisfies

D > Dmax, such that k(s,D) 6= knpl(s). Then, Lemma 1 implies k(s,D) > knpl(s). Then,

Lemma 7 implies that 0 ≤ F (s, k) − Rk − b < ξ + βδ, which implies, together with

V ≥ G(s, k), that

G(s, k(s,D)) ≤ V (s,D) ≤ ξ + βδ + βEV (s+1, D+1)

As it is obvious that V (sL, D) ≤ V (sH , D), it must be the case that EV (s+1, D+1) ≤
V (sH , D+1). Then,

G(s, k(s,D)) ≤ V (s,D) ≤ ξ + βδ + βV (sH , D+1), (43)

whereD+1 > D asD > Dmax(s). Lemma 8 implies that V (sH , D+1) < δg+G(sH , k(sH , D+1)).

Thus,

G(sH , k(sH , D)) < ξ + β(δ + δg) + βG(sH , k(sH , D+1)). (44)

Assumption 4 and the inequality (44) imply that G(sH , k(sH , D)) < (1 − β)Gnpl(s) +

βG(sH , k(sH , D+1)) ≤ G(sH , k(sH , D+1)), because Gnpl(s) ≤ G(sH , k(sH , D+1)). Thus,

k(sH , D) < k(sH , D+1). Let us set (s0, D0) = (s,D) and consider the sequence {st, Dt, k(st, Dt)}.
Given (44), we can prove the following inequality:

knpl(sH) < k(sH , Dt) < k(sH , Dt+1), (45)

G(sH , k(sH , D0)) <
{ξ + β(δ + δg)}(1− βt)

1− β
+ βtG(sH , k(sH , Dt)) (46)

The proof is by induction. The above argument has proven (45) and (46) for t = 0.

Suppose that (45) holds for t− 1. (44) applies for Dt and implies that

G(sH , k(sH , Dt)) < ξ + β(δ + δg) + βG(sH , k(sH , Dt+1)), (47)
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which, together with Assumption 4, implies that G(sH , k(sH , Dt+1)) > G(sH , k(sH , Dt)),

or k(sH , Dt+1) > k(sH , Dt). Thus, (45) has been proven for t. Suppose that (46) holds

for t. This inequality, together with (47), implies that

G(sH , k(sH , D0)) <
{ξ + β(δ + δg)}(1− βt)

1− β
+ βtG(sH , k(sH , Dt))

<
{ξ + β(δ + δg)}[1− βt + βt(1− β)]

1− β
+ βt+1G(sH , k(sH , Dt+1))

=
{ξ + β(δ + δg)}(1− βt+1)

1− β
+ βt+1G(sH , k(sH , Dt+1)).

Thus, (46) has been proven for t+ 1. We have demonstrated that (45) and (46) hold for

all t.

Assumption 4 and (46) imply that, in the limit of t → ∞, we have V (st, Dt) → ∞.

This is a contradiction because V (s,D) is bounded from above: V (s,D) < Vmax. Thus, it

cannot be the case that k(sH , D) 6= knpl(sH).

Next, we consider the case where s = sL. Suppose that k(sL, D) 6= knpl(sL). Then,

Lemma 1 implies that k(sL, D) > knpl(sL). In this case, Lemmas 7 and 8 imply that for

D0 = D and the sequence {st, Dt, k(st, Dt)},

G(sL, k(sL, Dt)) < ξ + β(δ + δg) + βEtG(st+1, k(st+1, Dt+1))

= ξ + β(δ + δg) + β[pLG(sL, k(sL, Dt+1)) + (1− pL)Gnpl(sH)],

where pL = Pr(st+1 = sL|st = sL) and G(sH , k(sH , Dt+1)) = Gnpl(sH) for Dt+1 > Dmax,

as shown above. Let k(sL, D) = k0 and define {kt}∞t=0 by the following law of motion,

G(sL, kt) = ξ + β(δ + δg) + β[pLG(sL, kt+1) + (1− pL)Gnpl(sH)].

Lemma 1 implies that k(sL, Dt) ≥ knpl(sL) for all t ≥ 1. In the case where k(sL, D) =

k0 > knpl(sL), the sequence {kt}∞t=0 is such that limt→∞ kt = ∞. Thus, V (sL, Dt) >

G(sL, k(sL, Dt)) − δg goes to infinity, and eventually violates the condition V (sL, Dt) <

Vmax. This is a contradiction. Thus, k(sL, D) must be knpl(sL).

Therefore, if D > Dmax, then k(s,D) = knpl(s) for all s ∈ {sL, sH}.

F Proof of Proposition 10

The proof consists of two parts. First, we prove the existence of one equilibrium, in which

V e(s,D) = G(s, knpl(s)) ≡ Gnpl(s). Second, we demonstrate that this equilibrium is the

unique equilibrium that maximizes d(s,D) subject to the no-default condition.

Existence: we guess and later verify that V e(s,D) = Gnpl(s). Given this expectation,
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the bank solves

d(s,D) = max
b∈∆b(s,D),k∈∆k(s)

b+ βEd(s+1, D+1),

s, t.

{
F (s, k)−Rk − b+ βEG(s+1, k

npl(s+1)) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

Given that V e(s,D) = Gnpl(s), it is easily shown that Γ(s,D) = {b | b ∈ ∆b(s,D), 0 ≤
b ≤ bnpl(s)}.

Claim: The solution to the bank’s problem is b(s,D) = bnpl(s) and k(s,D) = knpl(s).

(Proof of Claim)

Because b(s,D) ≤ bnpl(s), there exists a nonnegative integer m and a nonnegative real

number ε, where 0 ≤ ε < βδ, such that b(s,D) = bnpl(s) − ε −mβδ. Then, D+1(s,D) =

min{Nmaxδ, β
−1[D − b(s,D)]} = Dnpl

+1 + m′δ, where 0 ≤ m′ ≤ m and we define Dnpl
+1 =

min{Nmaxδ, nδ(β−1[D − bnpl(s)])}. Thus,

d(s,D) = b(s,D) + βEd(s+1, D
npl
+1 +m′δ)

= bnpl(s)− ε−mβδ + βEd(s+1, D
npl
+1 +m′δ)

= bnpl(s)− ε− (m−m′)βδ + βE[−m′δ + d(s+1, D
npl
+1 +m′δ)]

≤ bnpl(s)− ε− (m−m′)βδ + βEd(s+1, D
npl
+1 )

≤ bnpl(s) + βEd(s+1, D
npl
+1 ).

The first inequality is from Lemma 4. Therefore, b(s,D) = bnpl(s) and k(s,D) = knpl(s).

(End of Proof of Claim)

Thus, the solution to the bank’s problem is k = knpl(s) and b = bnpl(s). It is also eas-

ily confirmed that V (s,D) = F (s, knpl(s)) − Rknpl(s) − bnpl(s) + βEG(s+1, k
npl(s+1)) =

G(s, knpl(s)), which verifies the expectation.

Uniqueness: In what follows, we demonstrate that dnpl(s) is the maximum amount

of the present discounted value (PDV) of repayments that satisfies the enforcement con-

straint, and the above equilibrium is the unique equilibrium that attains dnpl(s). We

consider the following planner’s problem, assuming that k(s,D) = knpl(s). We set this

assumption because Lemma 9 shows that k(s,D) = knpl(s) for D > Dmax(sH) in any

equilibrium that exists. Given k(s,D) = knpl(s), the planner’s problem is

d(s,D) = max
b,V (s,D)

b+ βEd(s+1, β
−1(D − b)),

s. t. V (s,D) = F (s, knpl(s))−Rknpl(s)− b+ βEV (s+1, β
−1(D − b)) ≥ Gnpl(s),

F (s, knpl(s))−Rknpl(s)− b ≥ 0.
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Define Wnpl(s) = F (s, knpl(s)) − Rknpl(s) + βEWnpl(s+1). Then, d(s,D) = Wnpl(s) −
V (s,D). Thus, the planner’s problem can be rewritten as

max
b,V (s,D)

d(s,D) = Wnpl(s)− V (s,D),

s. t. d(s,D) ≤Wnpl(s)−Gnpl(s),

F (s, knpl(s))−Rknpl(s)− b ≥ 0.

We temporarily omit the limited liability constraint, F (s, knpl(s)) − Rknpl(s) − b ≥ 0,

and later justify that it is satisfied. Without this constraint, it is obvious that the max-

imum PDV of repayments is Wnpl(s) − Gnpl(s) = dnpl(s), and it is attained by set-

ting b = d(s,D) − βEd(s+1, D+1) = Wnpl(s) − Gnpl(s) − βE[Wnpl(s+1) − Gnpl(s+1)] =

Fnpl(s) − Rknpl(s) − Gnpl(s) + βEGnpl(s+1) = bnpl(s). Therefore, the value of the firm

becomes V (s,D) = Gnpl(s). By definition of knpl(s), it is obvious that the limited liability

constraint is satisfied in this equilibrium. Thus, the unique equilibrium that maximizes

the PDV of repayments is the NPL equilibrium.

G On the proof of Theorem 11

G.1 Proof of Lemma 12

We prove Lemma 12 by explicitly deriving {d(1)(s,D), V (1)(s,D), b(1)(s,D), k(1)(s,D)}.
For D < D∗∗(s) ≡ F (s, k∗(s))−Rk∗(s),

d(1)(s,D) = D,

V (1)(s,D) = F (s, k)−Rk + βV ∗H −D,

as d(1)(s,D) = maxb b+β[β−1(D− b)] and b = D is feasible because F (s, k)−Rk+βV ∗H −
D ≥ G(s, k) is satisfied at k = k∗(s). Thus, for 0 ≤ D ≤ D∗∗(s), (d(1)(s,D), V (1)(s,D))

are given as above, with k = k∗(s) and b = D.

For D ∈ (D∗∗(s), D∗(s)], where D∗(s) is the solution to D∗∗(s)+β[β−1(D−D∗∗(s))] =

D = F (s, k∗(s))−Rk∗(s) + βV ∗H −G(s, k∗(s)),

d(1)(s,D) = D,

V (1)(s,D) = F (s, k)−Rk + βV ∗H −D,

where k = k∗(s) and b = D∗∗(s).

For D ∈ (D∗(s), D̂(1)(s)], where D̂(1)(s) = F (s, knpl(s)) − Rknpl(s) − G(s, knpl(s)) +

βV ∗H , the solution (d(1)(s,D), V (1)(s,D)) is given as follows.

d(1)(s,D) = D,

V (1)(s,D) = F (s, k(s,D))−Rk(s,D) + βV ∗H −D,
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where

k(s,D) = arg max
k∈∆k(s)

F (s, k)−Rk −D + βV ∗H ,

s.t. F (s, k)−Rk −D + βV ∗H ≥ G(s, k). (48)

Then, it is obvious that k(s,D) is decreasing in D. D+1(s,D) is given by

D+1(s,D) = min
D+1∈∆

D+1,

s. t. D − βD+1 ≤ F (s, k(s,D))−Rk(s,D).

Note that if D = D̂(1)(s), then D+1 = V ∗H − β−1Gnpl(s) < D̄(0). Note that if D >

D̂(1)(s), the enforcement constraint (48) is never satisfied for any value of k, if V (1)(s,D) =

F (s, k(s,D))−Rk(s,D) + βV ∗H −D.
For D > D̂(1)(s), it must be the case that D+1 ≥ D̄(0), since otherwise V (1)(s,D)

becomes F (s, k(s,D))−Rk(s,D) +βV ∗H −D and the enforcement constraint (48) is never

satisfied because D̂(1)(s) is the maximum value that is feasible under (48). D+1 ≥ D̄(0)

is feasible for D (> D̂(1)(s)), because β−1D̂(1)(s) > D̄(0) is easily shown. Given that

D+1 > D̄(0), we have d(0)(s,D+1) = dnpl(s) and V (0)(s,D+1) = Gnpl(s). Thus, the

values of (d(1)(s,D), V (1)(s,D), b(s,D), k(s,D)) are given as the solution to the following

problem.

d(1)(s,D) = max
b∈∆b(s,D), k∈∆k(s)

b+ βEdnpl(s),

s.t.

{
F (s, k)−Rk − b+ βEGnpl(s) ≥ G(s, k),

F (s, k)−Rk ≥ b.

Then,

V (1)(s,D) = F (s, k(s,D))−Rk(s,D)− b(s,D) + βEGnpl(s).

The solution is

b(s,D) = bnpl(s), k(s,D) = knpl(s), d(1)(s,D) = dnpl(s), V (1)(s,D) = Gnpl(s),

for D > D̂(1)(s). It is also easily confirmed that

D̂(1)(s) = D̄(1)(s),

where D̄(1)(s) is defined by

D̄(1)(sH) = maxD,

s.t. D+1(sH , D) < D̄(0),

D̄(1)(sL) = maxD,

s.t. D+1(sL, D) < D̄(0).

Now, we can show the following claim.
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Claim 2. D̄(1)(sL) ≤ D̄(1)(sH) < D̄(0).

(Proof of Claim 2)

We have D̄(1)(sL) ≤ D̄(1)(sH), and

D̄(1)(sH) = F (sH , knpl(sH))−Rknpl(sH)−G(sH , knpl(sH)) + βV ∗H

< F (sH , k∗(sH))−Rk∗(sH) + βV ∗H −G(sH , knpl(sH))

= V ∗H −G(sH , knpl(sH)) = D̄(0).

(End of proof of Claim 2)

Note that dnpl(s) < D̄(1)(s) because V ∗H > Gnpl(sH) + dnpl(sH) implies that dnpl(s) =

bnpl(s) + βEdnpl(s+1) = F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βE[Gnpl(s+1) + dnpl(s+1)] <

F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βV ∗H = D̄(1)(s).

These explicit solutions directly imply (i)–(vi) of Lemma 12.

G.2 Proof of Lemma 13

Proof of (ii). The assumption (ii′) implies that Ed(n)(s+1, D+1) ≤ Ed(n−1)(s+1, D+1), and

the assumption (v′) implies that Γ(n+1)(s,D) ⊂ Γ(n)(s,D). These facts imply that

d(n+1)(s,D) = max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, D+1) ≤ max
b∈Γ(n)(s,D)

b+ βEd(n−1)(s+1, D+1) = d(n)(s,D).

Since bnpl(s) ∈ Γ(n+1)(s,D) and d(n)(s,D) ≥ dnpl(s) for D > dnpl(s),

d(n+1)(s,D) = max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, D+1) ≥ bnpl(s) + βEdnpl(s+1) = dnpl(s),

for D > dnpl(s). It is obvious that d(n+1)(s,D) ≥ 0 for D ≤ dnpl(s).

Proof of (iii). Assumption (iii′) implies that forD ≥ D̄(n+1)(s), the values of (d(n+1)(s,D),

V (n+1)(s,D), b(n+1)(s,D), k(n+1)(s,D)) are given as the solution to the following prob-

lem.

d(n+1)(s,D) = max
b∈∆b(s,D), k∈∆k(s)

b+ βEdnpl(s),

s.t.

{
F (s, k)−Rk − b+ βEGnpl(s) ≥ G(s, k),

F (s, k)−Rk ≥ b.

Then,

V (n+1)(s,D) = F (s, k(s,D))−Rk(s,D)− b(s,D) + βEGnpl(s).

It is easily shown that the solution is given by

b(s,D) = bnpl(s), k(s,D) = knpl(s), d(n+1)(s,D) = dnpl(s), V (n+1)(s,D) = Gnpl(s).
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Proof of (i). For D ≥ D̄(n+1)(s), it is the case that d(n+1)(s,D + δ) = dnpl(s) ≤
d(n+1)(s,D) + δ by the part (iii) above. Next, we consider the case where D < D̄(n+1)(s).

We can prove the following claim.

Claim 3. For D < D̄(n+1)(s), b(n+1)(s,D + δ) is the maximum feasible value, i.e.,

b(n+1)(s,D + δ) = max
b∈Γ(n+1)(s,D+δ)

b.

(Proof of Claim 3). Suppose that b(n+1)(s,D + δ) is not the maximum feasible value.

Then, b(n+1)(s,D+δ)+βδ ∈ Γ(n+1)(s,D+δ). We compare d(n+1)(s,D+δ) andX(n+1)(b(n+1)(s,D+

δ) + βδ, s,D + δ), where X(n+1)(b, s,D) ≡ b + βEd(n)(s+1, β
−1(D − b)). Assumption (i′)

implies that

X(n+1)(b(n+1)(s,D + δ) + βδ, s,D + δ)

= b(n+1)(s,D + δ) + βδ + βEd(n)(s+1, β
−1(D + δ − b(n+1)(s,D + δ))− δ)

= b(n+1)(s,D + δ) + βE{δ + d(n)(s+1, β
−1(D + δ − b(n+1)(s,D + δ))− δ)}

≥ b(n+1)(s,D + δ) + βEd(n)(s+1, β
−1(D + δ − b(n+1)(s,D + δ)))

= d(n+1)(s,D + δ) = max
b
X(n+1)(b, s,D + δ).

Assumption (iv′) implies that

V (n+1)(s,D + δ) =

F (s, k(s,D + δ))−Rk(s,D + δ)− b(s,D + δ) + βEV (n)(s+1, D
(n+1)
+1 (s,D + δ)) ≤

F (s, k(s,D + δ))−Rk(s,D + δ)− b(s,D + δ) + βE(−δ + V (n)(s+1, D
(n+1)
+1 (s,D + δ)− δ)) =

F (s, k(s,D + δ))−Rk(s,D + δ)− b(s,D + δ)− βδ + βEV (n)(s+1, D
(n+1)
+1 (s,D + δ)− δ).

Assumption (iv′) applies here as D + δ ≤ D̄(n+1)(s), which implies D(n+1)
+1 (s,D + δ) ≤

D̄(n)(s). These two inequalities imply that the equilibrium value of b should be b(s,D +

δ) + βδ. This contradicts the definition of b(n+1)(s,D + δ). Therefore, b(n+1)(s,D + δ) is

the maximum feasible value. (End of proof of Claim 3)

This claim implies that it suffices to consider the region b ≥ δ, when we evaluate d(n+1)(s,D+

δ). If b+δ ∈ Γ(n+1)(s,D+δ) then b ∈ Γ(n+1)(s,D) for D > F (s, k∗(s))−Rk∗(s).22 Defining

b̂ by b̂ = b(s,D + δ)− δ, it is easily demonstrated that b̂ ∈ Γ(n+1)(s,D). Thus,

d(n+1)(s,D + δ) = b(s,D + δ) + βEd(n)(s+1, β
−1(D + δ − b(s,D + δ)))

= δ + b̂+ βEd(n)(s+1, β
−1(D − b̂)),

≤ δ + max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, β
−1(D − b)) = δ + d(n+1)(s,D).

22For D ≤ F (s, k∗(s))−Rk∗(s), (b,D+1) = (D, 0) is feasible. Let d(n+1)(s,D) = b+βEd(n)(s+1, β
−1(D−

b)). Assumption (i′) implies that, for any b ≥ 0, βEd(n)(s+1, β
−1(D−b)) ≤ β[β−1(D−b)]+βEd(n)(s+1, 0).

Thus, it must be the case that d(n+1)(s,D) = D + βEd(n)(s+1, 0). Therefore, d(n+1)(s,D + δ) = δ +

d(n+1)(s,D), for D ≤ F (s, k∗(s))−Rk∗(s).
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Proof of (iv). We consider the case where D + δ ≤ D̄(n+1)(s). Define ∆̃b(s,D) = {b ∈
R|b = D − βD+1, where D+1 ∈ ∆+1, and b ≥ 0} ∪ {bnpl(s) − δ}. Define Γ̃(n+1)(s,D) =

{b ∈ ∆̃b(s,D) | ∃k ∈ ∆k(s), s.t. F (s, k) − Rk − b − δ + βEV (n)(s+1, β
−1(D − b)) ≥

G(s, k), and F (s, k)−Rk−b−δ ≥ 0}. Let b̃(s,D) be the maximum value of Γ̃(n+1)(s,D).

It is obvious that b̃(s,D) ≤ b(s,D), as b(s,D) is the maximum value of Γ(n+1)(s,D).

V (n+1)(s,D + δ) can be written as

V (n+1)(s,D + δ) = −δ + Ṽ (n+1)(s,D), (49)

where

Ṽ (n+1)(s,D) = max
k∈∆k(s)

F (s, k)−Rk − b̃(s,D) + βEV (n)(s+1, β
−1(D − b̃(s,D))), (50)

s.t. F (s, k)−Rk − b̃(s,D)− δ + βEV (n)(s+1, β
−1(D − b̃(s,D))) ≥ G(s, k),

F (s, k)−Rk − b̃(s,D)− δ ≥ 0.

Let k̃(s,D) be the solution to (50). The following claim holds:

Claim 4. b̃(s,D) and k̃(s,D) satisfy b̃(s,D) ≤ b(s,D) and k̃(s,D) ≤ k(s,D).

(Proof of Claim 4). We know b̃(s,D) ≤ b(s,D) from the above argument. Now, k(s,D)

is the maximum k that satisfies

F (s, k)−Rk − b(s,D) + βEV (n)(s+1, β
−1(D − b(s,D))) ≥ G(s, k),

F (s, k)−Rk − b(s,D) ≥ 0,

while k̃(s,D) is the maximum k that satisfies

F (s, k)−Rk − b̃(s,D)− δ + βEV (n)(s+1, β
−1(D − b̃(s,D))) ≥ G(s, k),

F (s, k)−Rk − b̃(s,D)− δ ≥ 0.

We will demonstrate that k̃(s,D) ≤ k(s,D) by contradiction. Suppose that k̃(s,D) >

k(s,D). Then, F (s, k̃(s,D)) − Rk̃(s,D) − b(s,D) ≥ 0 is satisfied. The condition for

b̃(s,D) implies

F (s, k̃(s,D))−Rk̃(s,D)− b̃(s,D)− δ + βEV (n)(s+1, β
−1(D − b̃(s,D))) ≥ G(s, k̃(s,D)).

(51)

By definition of Γ̃(n+1)(s,D), the fact that b̃(s,D) ≤ b(s,D) implies that there exists an

integer m (≥ 0) such that b̃(s,D) +mβδ = b(s,D). Then,

− b̃(s,D) + βEV (n)(s+1, β
−1(D − b̃(s,D))) = −b(s,D) +mβδ + βEV (n)(s+1, β

−1(D − b(s,D) +mβδ))

≤ −b(s,D) + βEV (n)(s+1, β
−1(D − b(s,D))),
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where the inequality is due to assumption (iv′). This inequality together with (51) implies

that

F (s, k̃(s,D))−Rk̃(s,D)− b(s,D)− δ + βEV (n)(s+1, β
−1(D − b(s,D))) ≥ G(s, k̃(s,D)).

This condition and the nonnegativity condition (F (s, k̃(s,D)) − Rk̃(s,D) − b(s,D) ≥ 0)

imply that k̃(s,D) ∈ Γ(n+1)(s,D), which implies that k̃(s,D) ≤ k(s,D), a contradiction.

Thus, it must be the case that k̃(s,D) ≤ k(s,D). (End of proof of Claim 4).

Let (k, b) = (k(s,D), b(s,D)) and (k̃, b̃) = (k̃(s,D), b̃(s,D)). Then, Claim 4 implies that

there exist a non-negative integer m and a non-negative real number ε such that

F (s, k̃)−Rk̃ = F (s, k)−Rk − ε,

b̃ = b−mβδ.

Thus,

Ṽ (n+1)(s,D) = F (s, k̃)−Rk̃ − b̃+ βEV (n)(s+1, β
−1(D − b̃)),

= F (s, k)−Rk − ε− b+mβδ + βEV (n)(s+1, β
−1(D − b) +mδ),

= −ε+ F (s, k)−Rk − b+ βE[mδ + V (n)(s+1, β
−1(D − b) +mδ)

≤ −ε+ F (s, k)−Rk − b+ βEV (n)(s+1, β
−1(D − b))

= −ε+ V (n+1)(s,D) ≤ V (n+1)(s,D),

where the first inequality is from Assumption (iv′). Note that Assumption (iv′) applies,

since β−1(D−b̃) < D(n)(s) because D+δ < D(n+1)(s). (49) implies that V (n+1)(s,D+δ) =

−δ + Ṽ (n+1)(s,D) ≤ −δ + V (n+1)(s,D).

Proof of (v). For D > D̄(n+1)(s), it is the case that V (n+1)(s,D) = Gnpl(s) as proven at

part (iii). Next, we consider the case where D ≤ D̄(n+1)(s). For a fixed (s,D), Assumption

(v′) implies that Γ(n+1)(s,D) ⊂ Γ(n)(s,D) and Λ(n+1)(s,D) ⊂ Λ(n)(s,D). The following

claim holds.

Claim 5. The variables for (n + 1)−th problem satisfy b(n+1)(s,D) ≤ b(n)(s,D) and

k(n+1)(s,D) ≤ k(n)(s,D).

(Proof of Claim 5). Since Γ(n+1)(s,D) ⊂ Γ(n)(s,D), Claim 3 implies that b(n+1)(s,D) ≤
b(n)(s,D). Next, we prove k(n+1)(s,D) ≤ k(n)(s,D). Denote by (C(n)) and (C(n+1)) the

following conditions:

(C(n))

{
F (s, k)−Rk − b+ βEV (n−1)(s+1, β

−1(D − b)) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0,

(C(n+1))

{
F (s, k)−Rk − b+ βEV (n)(s+1, β

−1(D − b)) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0,
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• Case 1: Suppose that b(n+1) = b(n)

In this case, k(n+1) ≤ k(n) should hold because (C(n+1)) is (weakly) tighter than

(C(n)) for b = b(n+1) = b(n).

• Case 2: Suppose that b(n+1) < b(n).

In this case, we first prove that the following condition holds:

0 ≤ F (s, k(n+1)(s,D))−Rk(n+1)(s,D)− b(n+1)(s,D) < δ(s, k(n+1)(s,D)) + βδ,

(52)

where δ(s, k(n+1)(s,D)) is defined by δ(s, k(n+1)(s,D)) ≡ F (s, k(n+1)(s,D))−Rk(n+1)(s,D)−
F (s, k(n+1)

− (s,D))+Rk(n+1)
− (s,D), where k(n+1)

− (s,D) is defined by f(s, k(n+1)
− (s,D))−

f(s, k(n+1)(s,D)) = βδ. Thus, k(n+1)
− (s,D) is the value of k, which is smaller than

and adjacent to k(n+1)(s,D). The condition (52) is proven by contradiction.23 Then,

as b(n)(s,D) ≥ b(n+1)(s,D) + βδ, the condition (52) implies that

F (s, k(n+1)
− (s,D))−Rk(n+1)

− (s,D)− b(n)(s,D) < 0,

which implies that k(n)(s,D) > k
(n+1)
− (s,D), which means k(n)(s,D) ≥ k(n+1)(s,D).

(End of proof of Claim 5).

Let (k, b) = (k(n)(s,D), b(n)(s,D)) and (k̃, b̃) = (k(n+1)(s,D), b(n+1)(s,D)). The above

claim implies that there exists a non-negative integer m and a non-negative real number

ε such that F (s, k̃)−Rk̃ = F (s, k)−Rk − ε and b̃ = b−mβδ. Thus,

V (n+1)(s,D) = F (s, k̃)−Rk̃ − b̃+ βEV (n)(s+1, β
−1(D − b̃)),

≤ F (s, k)−Rk − ε− b+mβδ + βEV (n−1)(s+1, β
−1(D − b) +mδ),

= −ε+ F (s, k)−Rk − b+ βE[mδ + V (n−1)(s+1, β
−1(D − b) +mδ)]

≤ −ε+ F (s, k)−Rk − b+ βEV (n−1)(s+1, β
−1(D − b))

= −ε+ V (n)(s,D) ≤ V (n)(s,D),

where the first inequality is from Assumption (v′) and the second inequality is from As-

sumption (iv′). Note that Assumption (iv′) applies since D ≤ D̄(n+1)(s), which implies

that β−1(D − b) ≤ D̄(n)(s) ≤ D̄(n−1)(s). The fact that k(n+1)(s,D) ≥ knpl(s) and the

enforcement constraint [V (n+1)(s,D) ≥ G(s, k(n+1)(s,D))] directly imply that

V (n+1)(s,D) ≥ Gnpl(s).

23Suppose that F (s, k(n+1)(s,D)) − Rk(n+1)(s,D) − b(n+1)(s,D) ≥ δ(s, k(n+1)(s,D)) + βδ. Then,

k = k
(n+1)
− (s,D) and b = b(n+1)(s,D) + βδ satisfies (C(n+1)), as follows. First, the limited liabil-

ity (F (s, k) − Rk − b ≥ 0) is obviously satisfied. Second, since F (s, k(n+1)(s,D)) − Rk(n+1)(s,D) −
G(s, k(n+1)(s,D)) = F (s, k

(n+1)
− (s,D)) − Rk

(n+1)
− (s,D) − G(s, k

(n+1)
− (s,D)) − βδ and V (n)(s+1, β(D −

b(n+1)(s,D))) ≤ V (n)(s+1, β(D − b(n+1)(s,D) − βδ)), the enforcement constraint is satisfied for k =

k
(n+1)
− (s,D) and b = b(n+1)(s,D) + βδ. Thus, they are in Γ(n+1)(s,D). Then, the solution to (n + 1)-th

problem should be b(n+1)(s,D) + βδ, instead of b(n+1)(s,D). This is a contradiction.
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Proof of (vi). First, we prove D̄(n+1)(s) ≤ D̄(n)(s) by contradiction. Suppose that

∃s, D̄(n+1)(s) > D̄(n)(s). Then, we can pick D such that D̄(n)(s) < D ≤ D̄(n+1)(s),

which satisfies

D
(n+1)
+1 (s,D) = β−1[D − b(n+1)(s,D)] < D̄(n)(sH) ≤ D̄(n−1)(sH),

D
(n)
+1 (s,D) = β−1[D − b(n)(s,D)] ≥ D̄(n−1)(sH).

These inequalities imply b(n+1)(s,D) > b(n)(s,D), while b(n+1)(s,D) is feasible in (n)-th

problem:

b(n+1)(s,D) ∈ Γ(n+1)(s,D) ⊂ Γ(n)(s,D).

Therefore, b(n)(s,D) and b(n)(s,D) + βδ are both feasible in (n)-th problem. Assumption

(i′) implies

d(n)(s,D) = b(n)(s,D) + βEd(n−1)(s+1, D
(n)
+1 (s,D))

≤ b(n)(s,D) + βE[δ + d(n−1)(s+1, D
(n)
+1 (s,D)− δ)]

= b(n)(s,D) + βδ + βEd(n−1)(s+1, D
(n)
+1 (s,D)− δ).

If d(n)(s,D) < b(n)(s,D)+βδ+βEd(n−1)(s+1, D
(n)
+1 (s,D)−δ), then b(n) +βδ should be the

solution to the (n)-th problem. This is a contradiction because b(n)(s,D) is the solution. If

d(n)(s,D) = b(n)(s,D)+βδ+βEd(n−1)(s+1, D
(n)
+1 (s,D)−δ), then the fact that d(n)(s,D) =

dnpl(s) and b(n)(s,D) = bnpl(s) for D > D̄(n)(s), and dnpl(s) = bnpl(s)+βEdnpl(s+1) imply

that

Ed(n−1)(s+1, D
(n)
+1 (s,D)− δ) < Ednpl(s+1),

which, in turn, implies that ∃s+1, d
(n−1)(s+1, D

(n)
+1 (s,D) − δ) < dnpl(s+1). On the other

hand, D > D̄(n)(s) > dnpl(sH) implies that D ≥ dnpl(sH) + 2δ, which, in turn, im-

plies that D(n)
+1 (s,D) − δ ≥ D − δ > dnpl(sH). Then, Assumption (ii′) implies that

d(n−1)(s+1, D
(n)
+1 (s,D)− δ) ≥ dnpl(s+1). Thus, we have demonstrated that ∃s+1, such that

dnpl(s+1) ≤ d(n−1)(s+1, D
(n)
+1 (s,D) − δ) < dnpl(s+1), which is a contradiction. Therefore,

it cannot be the case that ∃s, D̄(n+1)(s) > D̄(n)(s).

H Proof of Lemma 14

Claim 2 implies that b(s,D) = limn→∞ b
(n)(s,D) satisfies b(s,D) ≥ δ for D < Dmax(s).

For D ≥ Dmax(s), Lemmas 12 and 13 imply b(s,D) = bnpl(s) ≥ δ. Therefore, b(s,D) ≥ δ

for all (s,D).

Lemmas 12 and 13 imply that V (s,D) = limn→∞ V
(n)(s,D) andDmax(s) = limn→∞ D̄

(n)(s)

satisfy that V (s,D + δ) ≤ V (s,D)− δ for D < Dmax(s).
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