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Abstract

The large fluctuations of asset prices in financial crises are modeled as credit-

driven bubbles, where agency problems in the banking sector raise the asset prices

to unsustainable levels. The peak of a bubble and the timing of its collapse can be

predictable because the bubble collapses when the price hits an endogenous threshold

that is determined by structural parameters. Tighter monetary policy can dampen the

size of the bubble, whereas tighter prudential regulations that cause credit rationing

may exacerbate the bubble. Our theory recommends leaning against the bubbly wind,

rather than screening the borrowers, as a stabilization policy.

Key words: Asset prices, bubbles, risk-shifting, lean versus screen.

JEL classification: E30, E44, G12.

1 Introduction

Large and unstable fluctuations of asset prices are observed frequently in the recent

episodes of economic crises. The “housing bubbles” in the early 2000s in the United

States and the southern European countries are the similar episodes of accelerated growth

and sudden collapse of asset prices. These fluctuations in asset prices are explained as a

bubble, which cannot be accounted for by economic fundamentals.

Barlevy (2018) argues that, on one hand, the policymakers pay close attention to the

asset price bubbles because the bubbles are, they believe, destabilizing and distortionary,

whereas, on the other hand, the existing theories of bubbles are not satisfactory, as bub-

bles in those theories are neither destabilizing nor distortionary. The examples of such

models are bubbles due to dynamic inefficiency (Samuelson [1958], Tirole [1985]) or due

to borrowing constraint (Farhi and Tirole [2012], Martin and Ventura [2012, 2016], Hirano

and Yanagawa [2017]). There are theories of destabilizing and distortionary bubbles such

∗I thank Toni Braun, Tomohiro Hirano, Masaya Sakuragawa, and Yuki Sato for valuable discussions

and their insightful comments. I also thank Akio Ino for excellent research assistance.
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as those due to agency problems (Allen and Gorton [1993], Allen and Gale [2000], Barlevy

[2014]), while these models are two- or three-period models and therefore they are not

compatible with standard DSGE models that are used for study of business cycles. In

particular, they have nothing to tell about the “timing” of the collapse of the bubble.

In this paper, we propose a model of asset bubble, which is destabilizing and distor-

tionary, and the timing of the collapse is endogenously determined. Our model is a general

equilibrium model of a closed economy with infinite horizon, in which we embed Allen and

Gale’s (2000) model of credit-driven asset bubbles. We show that the peak of the asset

price and the timing of its collapse are endogenously determined, implying that we can

reasonably predict the bubbly dynamics of asset prices.

Barlevy(2018) argues that policymakers are also interested in the policy prescription

to asset bubbles. After the Global Financial Crisis, the policymakers have agreed upon

the necessity of preemptive intervention as a consensus, and the theme of policy debates

has become “lean versus screen” as a means of the ex ante intervention, that is, preemp-

tive monetary tightening to dampen the bubble (lean), or macroprudential regulation to

decrease the credit to borrowers who invest in the bubbly assets (screen).

In this paper, we theoretically compare preemptive monetary tightening and macro-

prudential regulation, and find that the monetary tightening can dampen the bubble,

whereas the prudential regulation may exacerbate the bubble. This result indicates that

monetary tightening is more appropriate than tighter prudential regulation as a means to

stabilize bubbly fluctuations of asset prices.

The organization of this paper is as follows. The model is presented and the equilib-

rium is characterized in the next section. In Section 3, monetary policy and prudential

regulation are compared as a means of stabilization of asset prices. Section 4 concludes.

2 Model

We embed Allen and Gale’s (2000) two-period model (AG model, hereafter) into the

infinite-horizon general equilibrium economy, in which the representative consumer makes

bank deposit, and the bank provides loans to the investors, who purchase risky assets and

can default on the bank loans when the return on the assets turns out to be low.

2.1 Setup

The model is an infinite-horizon closed economy. Time continues from 0 to infinity, i.e., t =

0, 1, 2, · · · . There exists the representative consumer who maximizes the present discounted

value of consumption, which is discounted by the subjective time discount factor β ∈ (0, 1).

There is also a unit mass of two-period lived investors, who are born in period t and die

in period t + 1. The investors work as agents for their owner, who is the representative
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consumer. There also exists a unit mass of competitive banks which accept deposits

from the consumer and make loans to the investors. The investors borrow funds from

the banks and invest in the safe and risky assets in order to maximize the dividends

to the representative consumer. The representative consumer divides the income into

consumption and savings, which is invested in the bank deposit. In this economy, the

asset markets are segregated as follows.

Assumption 1. Only the investors can invest in the safe and risky assets, whereas the

consumer and the banks cannot invest in those assets. The consumer can hold only bank

deposits and the banks can hold only the loans to the investors as their assets.

The segregation of the markets is a reasonable assumption, for both the safe and risky

assets are interpreted as corporate capital. The consumer and the banks may be able to

invest in the government bond, which do not explicitly appear in our model, whereas they

do not have necessary expertize to operate the corporate capital.

Representative consumer: Throughout this paper, we assume that aggregate un-

certainties do not exist and only idiosyncratic shocks on investors exist. Thus, there is no

uncertainty for the representative consumer and the dynamics of the bubbles turn out to

be deterministic. The consumer’s utility is given by

U =
∞∑

t=0

βtCt, (1)

where Ct is the consumption in period t. In every period, the representative consumer

provides one unit of labor to the market and receives the wage income wt. Her income in

period t consists of y, the fixed endowment from the nature; πt, the profit of the investors;

wt, the wage income; and rd
t dt−1, the return on the deposit made in the previous period

dt−1, where rd
t is the rate of return on deposit, which is specified later. The total income

is used to purchase Ct and to make bank deposit dt. Thus the budget constraint is

Ct + dt ≤ y + wt + πt + rd
t dt−1. (2)

The representative consumer maximizes (1) subject to (2). The first order condition

(FOC) with respect to dt in the consumer’s problem implies that the following condition

is necessary to have the equilibrium amount of deposit being positive, i.e., dt > 0:

1 ≤ βrd
t+1. (3)

Safe asset: There are two assets in this economy, i.e., the safe asset and the risky asset.

The safe asset equals the consumption goods. xt units of the safe asset invested in period

t generates the return, rt+1xt units of the consumption goods, in period t + 1. As in the
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AG model, we assume that there are the competitive production firms, that use the safe

asset xt as capital input. The firms use capital xt and labor nt, which is provided by the

representative consumer, to produce Axα
t n1−α

t units of the consumption goods in period

t + 1, where A is a productivity parameter. The safe asset xt completely depreciates to

zero after production. Thus the firm solves

max
xt,nt

Axα
t n1−α

t − rt+1xt − wt+1nt.

As the total supply of labor is one, i.e., nt = 1, in every period, the perfect competition

among the firms implies that {rt+1, wt+1} are given by

rt+1 = αAx̄α−1
t , (4)

wt+1 = (1 − α)Ax̄α
t , (5)

where x̄t is the average level of the safe-capital input in the society: x̄t =
∫ 1
0 xjtdj, where

xjt is the investor j’s holdings of safe capital. We denote f(x) = Axα. Then, it is rewritten

that rt+1 = f ′(x̄t) and wt+1 = (1 − α)f(x̄t). Note that {rt+1, wt+1} are determined in

period t.

Risky asset: In the initial period, the total quantity of the risky asset in the economy

is one, i.e., X0 = 1, and the risky asset does not depreciate unless the investor liquidates

it.1 An investor who owns the risky asset can liquidate it only after he holds it for one full

period. Since the investors live for two periods, this assumption implies that only the old

investors can liquidate the risky asset. Suppose that a (young) investor purchases Xt units

of the risky asset in period t and enters period t + 1 with them. Now, the (old) investor

pays the dead-weight cost of maintenance, c(Xt), in period t + 1. Then, the investor can

choose to either resell them or liquidate them. If he chooses to resell Xt, then he can

just sell them at the market price. If he chooses to liquidate Xt, then the risky asset

Xt is transformed into RXt units of the consumption goods immediately in period t + 1,

where R is a random variable, idiosyncratic to each investor, with the support of [0, Rmax],

the distribution function Φ(R), and the density function ϕ(R) = d
dRΦ(R). The investor

receives RXt units of consumption goods, while he pays the additional dead-weight cost

∆ in period t + 1, where ∆ is the fixed cost of liquidation. The dead-weight costs, c(X)

and ∆, are both consumption goods, with c(0) = c′(0) = 0, c′(X) > 0, and c′′(X) > 0.

Investors: In each period a unit mass of investors are born and work for their owner,

who is the representative consumer. They live for two periods. An investor has nothing

at birth and he borrows fund lt from a bank. The investor, then, purchases x units of

1Suppose that the risky asset is a corporate stock and the dividend is paid out only after the firm is

liquidated, by selling all the physical asset in the market.
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the safe asset and X units of the risky asset, using the borrowed fund. The assets yield

returns and the investor repays the debt in the next period. The bank loan is the debt

contract with the loan rate rl
t+1 and the investor can default on the loan when the return

from the assets turns out to be insufficient to repay the debt.

Lemma 1. In equilibrium,

rl
t+1 = rt+1. (6)

Proof. Suppose that rl
t+1 > rt+1. In this case, no investors invest in the safe asset and xt

becomes zero. Then, rt+1 = f ′(xt) = f ′(0) = +∞, which is a contradiction. Suppose on

the contrary that rl
t+1 < rt+1. In this case, all investors choose to borrow infinite amount

and invest it in the safe asset, i.e., lt = xt = ∞, Then, rt+1 = f ′(xt) = f ′(∞) = 0, which

is a contradiction. Therefore, rl
t+1 = rt+1 must hold.

The budget constraint for the investor born in period t is

xt + PtXt ≤ lt, (7)

where Pt is the price of the risky asset in terms of the safe asset (or the consumption

goods), which is the numeraire in this economy. The young investor chooses (xt, Xt, lt) in

period t, given that he will choose in period t + 1 to resell or liquidate Xt to maximize his

profit. The old investor in period t + 1 can default on the loan rt+1lt when the revenue

from the safe and risky assets are smaller than rt+1lt, whereas the cost of maintenance

and liquidation is not defaultable.

Assumption 2. The (old) investor in period t + 1 pays the dead-weight cost of mainte-

nance, c(Xt), if he resells Xt, and the dead-weight cost of liquidation, c(Xt) + ∆, if he

liquidates Xt. These is no exemption from these payments, even if he defaults on the bank

loan.

First, the problem for the old investor is formulated as

πOld
t+1(X) = max{πL

t+1(X), πS
t+1(X)},

where πL
t+1 is the investor’s profit when he chooses to liquidate in period t + 1, and πS

t+1

is the profit when he chooses to resell in period t + 1. πL
t+1 and πS

t+1 are defined by

πL
t+1(Xt) =

∫ Rmax

R∗
t

{rt+1xt + RXt − rt+1(xt + PtXt)}ϕ(R)dR − c(Xt) − ∆

=
∫ Rmax

R∗
t

(R − rt+1Pt)Xtϕ(R)dR − c(Xt) − ∆,

with

R∗
t = rt+1Pt,
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and

πS
t+1(Xt) = rt+1xt + Pt+1Xt − rt+1(xt + PtXt) − c(Xt) = (Pt+1 − rt+1Pt)Xt − c(Xt).

Next, the problem for the young investor is given as follows. Given the prices {Pt, rt+1, Pt+1},
the value to a young investor in period t is πY oung

t+1 , where

πY oung
t+1 ≡ max

x,X
πOld

t+1(X) = max{max
x,X

πL
t+1(X), max

x,X
πS

t+1(X)}.

Banks: In each period a competitive bank is born and lives for two periods. It accepts

deposit dt from the representative consumer and provides loans lt to the investors, to

maximize the profit. Thus, the bank’s problem is

max
dt,lt

Et[r̃t+1lt − rd
t+1dt],

s.t. lt ≤ dt,

where Et is the expectations in period t, and r̃t is a random return on the loan. The FOC

implies that

Etr̃t+1 = rd
t+1. (8)

Given the choice by the investors, {xt, Xt}, the value of Etr̃t+1 is written as follows. In

the case where the investors liquidate the risky asset in period t + 1,

Etr̃t+1 = rt+1 Pr(R ≥ R∗
t ) +

∫ R∗
t

0 (rt+1xt + RXt)ϕ(R)dR

xt + PtXt
, (9)

where R∗
t ≡ rt+1Pt. In the case where the investors resell the risky asset in period t + 1,

Etr̃t+1 = rt+1 Pr(Pt+1 ≥ rt+1Pt) +
rt+1xt + Pt+1Xt

xt + PtXt
Pr(Pt+1 < rt+1Pt).

2.2 Equilibrium

We focus on the symmetric equilibrium where all investors make the same choice whether

to resell or liquidate.

Resource constraint: The consumption goods are used for consumption Ct and in-

vestment in the safe asset xt, whereas they come from the endowment y and the production

f(xt−1) = rtxt−1 + wt. Thus, the following equality holds in the symmetric equilibrium.

Ct + xt = y + f(xt−1) − c(1) + Lt−1 × [R̄ − ∆], (10)

where Lt = 1 if all risky asset is liquidated in t + 1 and Lt = 0 if it is not in t + 1, and

R̄ ≡
∫ Rmax

0 Rϕ(R)dR is the mean of R.
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The bubble is always inefficient: As the risky asset generates R̄ − ∆ only when it

is liquidated and nothing otherwise, it is obvious that liquidating all the risky asset in the

initial period is the first best. This is easily confirmed to see the inter-temporal resource

constraint, given that rd
t = rt = β−1 and the risky asset is liquidated at t = τ , i.e.,

∞∑
t=0

βtCt ≤
1

1 − β
y + f(x−1) +

∞∑
t=0

βt{βf(xt) − xt} −
1 − βτ+1

1 − β
c(1) + βτ (R̄ − ∆),

This constraint implies that the utility
∑∞

t=0 βtCt is maximized when τ = 0. Thus, the

immediate liquidation of the risky asset is the necessary condition for attaining the first

best. This result implies that any equilibrium that involves the bubble is inefficient in our

model.

In what follows we characterize the “bubbly periods,” in which the risky asset is resold

in the next periods, and the “collapsing period,” in which the risky asset is liquidated in

the next period, and show that the price of risky asset should grow by Pt+1 = β−1Pt+c′(1)

in the bubbly periods and it should be at a particular value PT = P g in the collapsing

period T . Thus, our characterization implies that the price of risky asset Pt grows for the

first several periods until it hits the threshold value P g, and then, the bubble collapses, i.e.,

the risky asset is liquidated. Since then, the economy stays at the steady state equilibrium

without risky asset.

2.2.1 Bubbly periods

In this subsection, we characterize the “bubbly period,” which is the equilibrium for period

t, with that all investors resell the risky asset in period t + 1. In the bubbly periods, the

risky asset is not liquidated and thus there is no uncertainty in the economy. Therefore,

there is no default on the bank loan nor the bank deposit. The FOC in the consumer’s

problem, (3), implies that rd
t+1 = rt+1 = β−1. The investor allocates the loan lt to the safe

asset xt and risky asset Xt to maximize the profit, πS
t+1. Thus, an investor’s problem is

max
xt≥0,Xt≥0

πS
t+1. (11)

The FOC with respect to Xt, together with Xt = 1, implies that

Pt+1 = β−1Pt + c′(1) (12)

Denote by x∗ the solution to f ′(x) = β−1. Then, xt = x∗. We assume the following

restriction on the parameter values so that the resource constraint (10) is satisfied in the

bubbly periods.

x∗ ≤ y + f(x∗) − c(1). (13)

Note that πS
t+1 = c′(1) − c(1) > 0 in the bubbly periods.
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The condition for the young investors’ problem to become maximization of πS
t+1 is

that, given {Pt, rt+1, Pt+1}, where rt+1 = β−1,

max
X

πL
t+1 = max

X

∫ Rmax

β−1Pt

(R − β−1Pt)ϕ(R)dR X − c(X) − ∆ ≤ c′(1) − c(1) = πS
t+1.

This condition can be rewritten as

Pt ≥ PL, (14)

where PL is defined as the solution to∫ Rmax

β−1P
(R − β−1P )ϕ(R)dR = c′(XL), (15)

where XL is the solution to

πL(X) = c′(1) − c(1),

where πL(X) is defined as πL(X) ≡ c′(X)X − c(X) − ∆.

The argument in this subsection is summarized as follows.

Proposition 2. In period t, if Pt ≥ PL, rt+1 = β−1, and Pt+1 = β−1Pt + c′(1), then all

the investor chooses not to liquidate the risky asset.

2.2.2 Collapsing period

Here, we characterize the equilibrium for period t = T with that all the risky asset is to

be liquidated in the next period. We call period T the “collapsing period.” The investor’s

problem in the collapsing period must be

max
xt≥0,Xt≥0

πL
t+1. (16)

As Xt = 1, the FOC with respect to Xt implies that in equilibrium,

R∗
t ≡ rt+1Pt = R∗,

where R∗ is the solution to the FOC:∫ Rmax

R∗
(R − R∗)ϕ(R)dR = c′(1), (17)

This condition pins down the value of R∗ uniquely. We focus on the case where

πL
t+1 = c′(1) − c(1) − ∆ ≥ 0,

in equilibrium, i.e, we impose the restriction that ∆ ≤ c′(1) − c(1). The condition for the

young investors’ problem to become maximization of πL
t+1 is that, given {Pt, rt+1, Pt+1},

max
X

πS
t+1 = max

X
(Pt+1 − rt+1Pt)X − c(X) ≤ c′(1) − c(1) − ∆.
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This condition can be rewritten as

Pt+1 ≤ rt+1Pt + c′(XS), (18)

where XS is defined as the solution to

c′(X)X − c(X) = c′(1) − c(1) − ∆. (19)

Uniqueness of price in the collapsing period: In what follows we assume that

f(x) = Axα. Given the solution to (17), R∗, and the rate of return on the safe asset,

rt+1 = r, the variables Pt and xt are given by

Pt = P (r) ≡ R∗

r
,

xt = x(r) ≡
(

αA

r

) 1
1−α

,

because rt+1Pt = R∗ and rt+1 = f ′(xt), respectively. The consumer’s FOC (3), together

with (8) and (9), implies that for lt > 0, the following condition must hold in equilibrium:

1 ≤ β Pr(R > R∗)rt+1 + β

∫ R∗

0 (rt+1xt + R)ϕ(R)dR

xt + Pt
.

The right-hand side can be written as the function g(rt+1), where

g(r) ≡ β Pr(R > R∗)r + β

∫ R∗

0 (rx(r) + R)ϕ(R)dR

x(r) + P (r)
.

In what follows, we focus on the case where the parameters satisfy the following condition.

ω ≡ Pr(R > R∗) +
∫ R∗

0

(
R

R∗

)
ϕ(R)dR ≥ 2α − 1. (20)

We can show the following lemma.

Lemma 3. Given that the parameters satisfy (20), the equation g(r) = 1 has a unique

solution.

The proof is given in Appendix A. Denote by rg the solution to

g(r) = 1. (21)

Define P g ≡ R∗

rg . Then we have the following lemma.

Lemma 4. The price in the collapsing period T must satisfy PT = P g.

The proof is given in Appendix B. The argument in this subsection can be summarized

as the following proposition.

Proposition 5. Only if (PT , rT+1) = (P g, R∗

P g ) and PT+1 ≤ R∗ + c′(XS), all the investors

in period T choose to liquidate the risky asset in period T + 1.
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Collapse of the bubble in the value of risky asset: The price of the risky asset

PT = P g is jacked-up by the risk-shifting from the investors to the banks (or the consumer)

just like in Allen and Gale (2000). We see P g is higher than the “fundamental price” of

the risky asset, P̄T , which is defined, in the same way as in Allen and Gale (2000), as

the price at which the investor who invests his own money is willing to invest in the risky

asset, given the risk-free rate rT+1. Thus,

P̄T =
1

rT+1

[
R̄ − c′(1)

]
. (22)

Proposition 1 in Allen and Gale (2000) implies that P g > P̄T , given rT+1 = rg, as (17)

can be rearranged to

P g =
1

rT+1

[∫ Rmax

R∗ Rϕ(R)dR − c′(1)
Pr(R ≥ R∗)

]
.

Note that (17) implies that R∗ → Rmax in the case where the marginal cost of liquidation

is negligibly small, i.e., c′(1) → 0. Then,

P g =
R∗

rT+1
→ Rmax

rT+1
and P̄T → R̄

rT+1
, as c′(1) → 0.

If Rmax ≫ R̄, P g can be quite larger than the fundamental price P̄T , when the marginal

cost of liquidation c′(1) is sufficiently small. In period T + 1, the total value of the risky

asset turns out to be2

R̄ − c(1) − ∆,

which is much lower than the price in the previous period, PT = P g. The change in the

value of risky asset from PT XT = P g in period T to R̄ − c(1) − ∆ in period T + 1 can be

interpreted as the collapse of the bubble.

2.2.3 The deterministic equilibrium with bubble

We have characterized the bubbly periods, when the risky assets are resold from the old

to young investors, and the collapsing period, when the price of the risky asset hits the

peak value, which is uniquely given as P g. It is shown as follows that the equilibrium path

is deterministic, given that the initial price of the risky asset, P0, satisfies PL < P0 < Pg.

Proposition 6. Suppose that there exist a positive integer T and the sequence of prices

{Pt}T+1
t=0 , which satisfies P0 > PL, PT = P g, PT+1 < R∗+c′(XC), and Pt+1 = β−1Pt+c′(1)

for 0 ≤ t ≤ T − 1. This sequence {Pt}T+1
t=0 is the equilibrium prices, and all old investors

choose to resell the risky asset in bubbly periods, i.e., t = 0, 1, 2, · · · , T , and choose to

liquidate it in period T + 1. Thus, the price of risky asset grows for t = 0, 1, 2, · · · , T , and

the risky asset is liquidated in period T + 1.

2Note that R is an idiosyncratic shock to each investor.
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Proof. It suffices to prove that Pt > P g cannot hold in equilibrium. Suppose that in some

period t0, Pt0 > P g and all the risky asset is purchased by the investors who are born in

period t0. Lemma 4 implies that period t0 cannot be the collapsing period, and then t0 is

the bubbly period, implying that Pt0+1 = β−1Pt0 +c′(1) > P g. Thus, t0 +1 should be also

the bubbly period. By induction, it is shown that all periods t ≥ t0 should be the bubbly

periods. Thus, Pt+1 = β−1Pt + c′(1), rt+1 = β−1, xt = x∗, Xt = 1, and πt = c′(1) − c(1),

for all t ≥ t0. The budget constraint for the consumer can be rewritten as follows, as

dt = xt + Pt:

Ct + xt + Pt = y + wt + rtxt−1 + rtPt−1 + c′(1) − c(1).

Since xt = x∗, rt+1 = β−1, and wt + rtxt−1 = f(xt−1), this budget constraint can be

simplified to

Ct + x∗ + Pt = y∗ + β−1Pt−1,

where y∗ = y + f(x∗) + c′(1)− c(1). Adding up the period t0 + j budget multiplied by βj ,

we obtain the present value budget:

J∑
j=0

βj(Ct0+j + x∗) + βJPt0+J =
J∑

j=0

βjy∗ + β−1Pt0−1.

The transversality condition for the consumer is thus limJ→∞ βJPt0+J = 0, whereas

βJPt0+J > βJ−1Pt0+J−1 > · · · > Pt0 > 0, because Pt+1 = β−1Pt + c′(1) for t ≥ t0.

Thus, the transversality condition is not satisfied. This contradicts the rationality of the

consumer. Therefore, Pt cannot be larger than P g in equilibrium.

In Appendix C, we show a simple back-of-the-envelope example, in which the bubbly

periods continue for the first two periods and the bubble hits its peak in the third period.

The risky asset is liquidated in the fourth period.

Uniqueness of the price path: It can be said that the equilibrium path of the price

is unique in that the price must hit P g eventually, i.e., ∃T (≥ 0) such that PT = P g,

and the evolution of the price is deterministic. T , the number of bubbly periods, can

vary depending on the initial value P0, which can take any value on the path as long as

PL < P0 < P g. Note that there always exists the fundamental equilibrium with T = 0,

where all the risky asset is liquidated in the initial period, given that P0 < PL.

3 Policy comparison: Lean versus screen

In this section, we evaluate and compare the effects of monetary policy and prudential

regulation on the price of risky asset. As we will see below, the most prominent difference
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between the equilibrium with monetary policy and that with prudential regulation is that

rt+1 = rl
t+1 (> rd

t+1) in the collapsing period with binding monetary policy, whereas

rt+1 > rl
t+1 (> rd

t+1) in the collapsing period with binding prudential regulation.

3.1 Monetary policy

In our model, where there is no money nor nominal variables, we use a simplified assump-

tion, following Allen and Gale (2000), that the central bank can decide the total amount

of bank credit, Bt, which is equalized to the loan demand, lt, in equilibrium. Thus, (7)

implies that

Bt = xt + PtXt,

in equilibrium. The monetary policy is represented by the amount of B, which is in fact

determined as an equilibrium outcome of the central bank’s decision of nominal interest

rate under the economic environment with nominal rigidities, while these details are not

explicitly modeled in this paper.

The noticeable feature of monetary policy in this model is that B is the constraint

for the bank’s decision-making. When B is decided by monetary policy, it gives the total

supply of credit in this economy and B is not a constraint for the investors’ decisions,

whereas B is the constraint for the individual investors when it is determined by the

prudential regulations (see the next subsection).

We distinguish the equilibrium variables in the laissez faire case by putting the su-

perscript LF : (xt, rt+1, Pt, P
g) = (xLF

t , rLF
t+1, P

LF
t , P g,LF ), from those in the case with

monetary policy B = {Bt}∞t=0: (xt, rt+1, Pt, P
g) = (xt(B), rt+1(B), Pt(B), P g(B)).

The following proposition holds for the price in the collapsing period T , P g(B),

Proposition 7. P g(B) is lower than P g,LF , when BT is such that rT+1(B) > rLF
T+1.

Proof. As the central bank decides the total amount of credit, B, by setting the nominal

interest rate, it does not affect the consumer’s nor the investors’ problem, and it does

affect the banks’ problem. Thus, rd
t (B) = rd,LF

t = β−1 and rt(B) = rl
t(B) for all t,

because Lemma 1 holds. The central bank can make rt(B) > rd
t (B) = β−1 by setting B

sufficiently small. In this case, (rT+1(B), P g(B)) is the solution to

r = f ′(B − P ),

P =
R∗

r
, where R∗ is the solution to

∫ Rmax

R∗
(R − R∗)ϕ(R)dR = c′(1),

because B = x + PX and X = 1 in equilibrium. As R∗ does not depend on B, it is easily

confirmed that r(B), the solution to r = f ′(B − R∗

r ), is decreasing in B. Thus, when the

central bank sets B sufficiently small such that r(B) > rLF
T+1, then the peak price of the

risky asset becomes lower than that in the laissez faire case, i.e., P g(B) = R∗

r(B) < R∗

rLF
T+1

=

P g,LF .
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This proposition shows that tighter monetary policy can dampen the size of the asset

price P g(B) (< P g,LF ) and duration of the bubble T , as the asset price evolves by the law

of motion Pt+1 = rt+1(B)Pt + c′(1) during the bubbly periods, and rt+1(B) > rLF
t+1 = β−1

for 0 ≤ t < T .

3.2 Prudential regulation

Now we interpret B as the constraint on the credit obtained by the individual investors,

rather than the total supply of the credit in the economy. Then, the government decision

of B is interpreted as the credit rationing due to the prudential regulation. In this case,

each investor faces the credit constraint:

x + PX ≤ B, (23)

and Lemma 1 should be modified to

rl
t+1 ≤ rt+1, (24)

where rl
t+1 = rt+1 if (23) is not binding and rl

t+1 < rt+1 if it is binding.

The price in the collapsing period, P g(B) is decided by the maximization of πL by the

investor, which is, in the case where x + PX ≤ B is binding,

πL =
∫ Rmax

R∗(X)
{R − R∗(X)}Xϕ(R)dR − c(X) − ∆,

where R∗(X) = rP − (r − rl) B
X . The FOC with respect to X is

∫ Rmax

R∗(X)[R − R∗(X) +

(r − rl) B
X ]ϕ(R)dR = c′(X). Thus, the FOC and the equilibrium condition X = 1 imply

that the equilibrium variables (rT+1, r
l
T+1, P

g) = (r̂(B), r̂l(B), P̂ g(B)) are decided as the

solution to

r = f ′(B − P ), (25)∫ Rmax

rP−(r−rl)B
[R − rP + 2(r − rl)B]ϕ(R)dR = c′(1), (26)

1 = β Pr(R > rP − (r − rl)B)rl + β

∫ rP−(r−rl)B

0

(R − rP + rB)
B

ϕ(R)dR, (27)

where (27) is the consumer’s FOC, 1 = βrd. Note that (26) implies that rP−(r−rl)B ≥ R∗

for r ≥ rl. Then,

R̂(B) ≡ rP > R∗, (28)

R̃(B) ≡ R̂(B) − {r(B) − rl(B)}B > R∗, (29)

for r > rl and R̂ = R̃ = R∗ for r = rl. Here we focus on the case that B < BLF
T+1, where

BLF
T+1 is defined as the amount of credit that each investor obtains in the collapsing period

13



in the case where there is no credit constraint, i.e.,

BLF
T+1 ≡ xLF

T + P g,LF . (30)

Therefore,

B − R̂

r
< BLF

T+1 −
R̂

r
≤ BLF

T+1 −
R∗

r
.

This inequality implies that f ′(B − R̂
r ) > f ′(BLF

T+1 − R∗

r ) for all r > 0. This inequality

implies that

r̂(B) > rLF
T+1, (31)

because r̂(B) is the solution to r = f ′(B − R̂
r ), and rLF

T+1 is the solution to r = f ′(BLF
T+1 −

R∗

r ). Now, in the following proposition, we can demonstrate a surprising example that

credit rationing due to smaller B (< BLF ) may raise the asset price to a higher level than

the laissez faire case, i.e.,

P̂ g(B) > P g,LF for B < BLF .

The intuition behind this result is explained as follows. The tighter prudential regulation

lowers B, which raises r in (25), so that r becomes larger than rl. As the market rate r

is raised, while the loan rate rl is still low, the threshold of default, R∗, is lowered. This

is because R∗ is determined by rx + R∗X = rlB and r gets higher, while rl remains low.

As R∗ becomes lower, so does the probability of default. The lower probability of default

makes the investors’ demand for the risky asset increase, leading to an increase in P g, the

price of the risky asset. Another explanation is that, in (26), where the marginal gain of

investing in an additional amount of the risky asset is equalized to the marginal cost, the

marginal gain (the left-hand side) is larger when r − rl > 0 than when r = rl; thus, the

investors’ demand for the risky asset increases, leading to an increase in P g. In this way,

the tighter prudential regulation can increase the asset price.

Proposition 8. Suppose that f(x) = Axα with α = 0.8 and R ∼ U [0, Rmax], i.e., ϕ(R) =
1

Rmax . There exists the parameter A such that d
dB P̂ g(B) < 0 at B = BLF , which implies

that a tighter prudential regulation, represented by B < BLF , raises the asset price, i.e.,

P̂ g(B) > P g,LF .

The proof is given in Appendix D.

4 Conclusion

A model of credit-driven bubble is presented, where agency problems in the banking sector

bid up the asset price to an unsustainable height. In this model, the peak of the bubble

14



and the timing of its collapse (T ) can be predicted as the bubble collapses when the price

hits an endogenous threshold (P g). Tighter monetary policy can dampen the size of the

bubble, whereas tighter prudential regulations that cause credit rationing may exacerbate

the bubble. This model implies that asset bubble is destabilizing and distortionary, and

that the bubbly dynamics of the asset price may be reasonably predictable from the

structural parameters, as the values (T, P g) are determined by those parameters.

Although the model in the present paper is made simple for the ease of exposition,

it must be easily generalized to a non-linear and stochastic dynamic-general-equilibrium

model, where we believe our results should be basically preserved. These applications are

left for future research.
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Online Appendices

Appendix A: Proof of Lemma 3

The equation g(r) = 1 can be rewritten as F (r) = 0, where

F (r) ≡ (αA)γ(βr − 1) + R∗rγ−1(ωβr − 1),

where γ = (1 − α)−1. Note that 0 < ω < 1. It is obvious that

F (r) < 0, for 0 < r ≤ β−1, (32)

F (r) > 0, for r ≥ (ωβ)−1. (33)

Thus, the solution to F (r) = 0 should satisfy β−1 < r < (ωβ)−1. Now the second

derivative of F (r) is calculated as

F ′′(r) = (γ − 1)R∗rγ−3{γωβr − (γ − 2)}.

Thus, F ′′(r) ≥ 0 for r ≥ r̂, where r̂ ≡ γ−2
γ (ωβ)−1. The condition (20) implies that

r̂ ≤ β−1, implying that

F ′′(r) ≥ 0, for r ≥ β−1.

This concavity and continuity of F (r) imply that the solution to F (r) = 0 should be

unique if it exists, and conditions (32) and (33) imply that there exists a unique solution

in (β−1, (ωβ)−1).

Appendix B: Proof of Lemma 4

Suppose PT < P g, then 1 < g(R∗

PT
), which means the return on the bank deposit rd

T+1

exceeds β−1. In this case, the consumer chooses CT = 0. Noting that period T − 1 is the

bubbly period, we have dT = lT = y+rT dT−1 +wT +πS
T = y+f(xT−1)+rT PT−1 +c′(1)−

c(1). As lT = xT +PT and PT = rT PT−1 +c′(1), this implies that xT = y+f(xT−1)−c(1),

which exceeds x(R∗

PT
), as y is assumed to be sufficiently large. This result contradicts

rT+1 = f ′(xT ). Thus, PT cannot be strictly smaller than P g. Suppose PT > P g, then

1 > g(R∗

PT
), which means that the return on the bank deposit rd

T+1 is below β−1. In this

case, consumer chooses dT = lT = 0 and CT = y + f(xT−1) − c(1). Then, xT = 0, which

contradicts xT = x(R∗

PT
) > 0. Thus, PT cannot be strictly larger than P g. Therefore,

PT = P g in the collapsing period.
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Appendix C: A back-of-the-envelope example

Here we describe a simple example in which R follows the uniform distribution in [0, Rmax],

i.e., U [0, Rmax]. We set the cost of continuation, c(X) = εX1+γ , and the cost of liquidation,

c(X) + ∆ = εX1+γ + ∆, where ∆ (> 0) is a fixed cost. First we derive the solution to

(17), R∗. Since (17) is written as

(Rmax − R∗)2

2Rmax
= (1 + γ)ε,

the solution is

R∗ = Rmax

{
1 −

√
2(1 + γ)ε

Rmax

}
.

We set the values of parameters such that R∗ = 0.8Rmax and γ = 10. Then, c′(1) =

(1 + γ)ε = 0.02Rmax. Thus, c(X) = 0.02
11 RmaxX11.

Next, we derive PL, where the price must satisfy Pt ≥ PL in the bubbly period t. As

XL solves c′(X)X − c(X) − ∆ = c′(1) − c(1),

XL =
(

1 +
∆
γε

) 1
1+γ

.

Then RL = β−1PL solves (15), which is written as

(Rmax − RL)2

2Rmax
= (1 + γ)ε

(
1 +

∆
γε

) γ
1+γ

.

Thus,

PL = βRL = βRmax

{
1 −

(
1 +

∆
γε

) γ
2(1+γ)

√
2(1 + γ)ε

Rmax

}
.

We set ∆ such that, in the collapsing period, πL = c′(1) − c(1) − ∆ = 0 or ∆ = γε. In

this case,
(
1 + ∆

γε

) γ
2(1+γ) = (2)

10
22 = 1.37, and

PL = 0.726βRmax. (34)

We derive the gross interest rate in the collapsing period, rT+1, by solving (21). Since

Pr(R ≥ R∗) = 0.2, g(r) in (21) is written as follows.

β Pr(R > R∗)r + β

∫ R∗

0 (rx(r) + R) dR
Rmax

x(r) + P (r)

= β0.2r + β
{0.8rx(r) + 0.16Rmax + (0.8)2

2 Rmax}
x(r) + P (r)

=
β

x(r) + P (r)
{rx(r) + 0.48Rmax}

= β
{x(r)r + 0.48Rmax}

x(r) + 0.8Rmax

r

= g(r).
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Now, we consider the case where A → ∞. We guess and verify later that r = O(1) as

A → ∞. Then, x(r) → ∞ and (21) can be rewritten as

1 ≈ βr.

Therefore, in the case where A is sufficiently large, r ≈ β−1, and thus,

P g = R∗/r ≈ 0.8βRmax. (35)

We set β = 0.99. In this case P g = 0.792Rmax and PL = 0.719Rmax. Suppose that

PT = P g = 0.792Rmax. Then, PT−1 = β(P g − c′(1)) = 0.7642Rmax, PT−2 = β(PT−1 −
c′(1)) = 0.7368Rmax, PT−3 = β(PT−2 − c′(1)) = 0.7097Rmax < PL = 0.719Rmax. Thus,

the collapsing period is T = 2 and the path of equilibrium prices is {P0 = 0.7368Rmax, P1 =

0.7642Rmax, P2 = P g = 0.792Rmax}, with P3 taking any value satisfying P3 < βP g. In

this model, the price of risky asset can grow for 2 periods and collapses in the third period.

Note that (22) implies that the fundamental price P̄t is β[R
max

2 − c′(1)] = 0.4752Rmax, as

rt ≈ β−1 for all t.

Appendix D: Proof of Proposition 8

In this case, the FOCs (25)–(27) are written as

r =
αA

(B − P )1−α
, (36)

1
2
{(Rmax)2 − (rP − (r − rl)B)2} + [2(r − rl)B − rP ][Rmax − rP + (r − rl)B] = c′(1)Rmax,

(37)

Rmax

β
= {Rmax − rP + (r − rl)B}rl +

1
2
(rl)2B + r(1 − P

B
)[rP − (r − rl)B]. (38)

The solution to this system of equations is (r, rl, P ) = (r̂(B), r̂l(B), P̂ g(B)). The differen-

tiation of the above equations with respect to B gives

r′ = −(1 − α)αA(1 − P ′)
(B − P )2−α

, (39)

[rP − (r − rl)B](r′P + rP ′ − (r − rl) − (r′ − rl′)B]

= [2(r − rl) + 2(r′ − rl′)B − r′P − rP ′][Rmax − rP + (r − rl)B]

+ [2(r − rl)B − rP ][−r′P − rP ′ + (r − rl) + (r′ − rl′)B], (40)

0 = (−r′P − rP ′ + (r − rl) + (r′ − rl′)B)rl + (Rmax − rP + (r − rl)B)rl′ + rlrl′B +
(rl)2

2

+ r′(1 − P

B
)[rP − (r − rl)B] + r(−P

B
+

P

B2
)[rP − (r − rl)B]

+ r(1 − P

B
)[r′P + rP ′ − (r′ − rl′)B − (r − rl)], (41)
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where r′ = d
dB r, rl′ = d

dB rl, and P ′ = d
dB P . Evaluating at B = BLF , where r = rl, the

second and the third equations imply that at B = BLF ,

r′P + rP ′ = 2(r′ − rl′)B, (42)

0 = (Rmax + rB)rl′ +
r2

2
− 2(r′ − rl′)rP +

(
rP

B

)2

. (43)

Solving (39), (42), and (43) for P ′, we obtain{
(Rmax+rB)

2B r + r2P
B

[Rmax + rB(1 − P
2B ) − rP 2

B ]
− (1 − α)r

B − P

}
P ′ =

r2

2 + r2P 2

B2

[Rmax + rB(1 − P
2B ) − rP 2

B ]
− (1 − α)r

B − P
.

(44)

Now, we will show that P ′ = d
dB P < 0 at B = BLF , which implies that the tightening

of financial regulation exacerbates the bubble, i.e., P (B) > P (BLF ) for B < BLF . By

choosing c′(1) appropriately, we can rewrite (37), evaluated at B = BLF , as P = p
rRmax,

where p is a parameter. We set p = 0.8, as we did in Section 4. (Note that pRmax = R∗,

as P in (37) is P g in Section 2.) We also set (αA)
1

1−α = bRmax, where b is a parameter

that satisfies 0 ≤ b < ∞. Then, (36), evaluated at B = BLF , can be rewritten as

B =
[
p + b

r
α

1−α

]
Rmax

r . Then, (38), evaluated at B = BLF , can be rewritten as an equation

for r,

r − β−1

p + b

r
α

1−α

= r

 1(
1 +

b
p

r
α

1−α

)2 − 1
2

 . (45)

Rewriting the left-hand side and the right-hand side of (44), we obtain the (sufficient)

condition for P ′ < 0 at B = BLF , that is, r(b), the solution to (45) should satisfy both
1

2

„

p+ b

r
α

1−α

« + 1
2 + p

p+ b

r
α

1−α

1 + p + b

r
α

1−α
− p

2 − p2

p+ b

r
α

1−α

− (1 − α)
r

α
1−α

b
> 0, (46)

and
1
2 + p

p+ b

r
α

1−α

1 + p + b

r
α

1−α
− p

2 − p2

p+ b

r
α

1−α

− (1 − α)
r

α
1−α

b
< 0. (47)

By setting p = 0.8, α = 0.8 and β = 0.99, we can numerically confirm that, for b ∈
(0.15, 0.1725], there exists the solution to (45) that satisfies r(b) ≥ β−1 and both (46) and

(47).3 For example, when b = 0.1725, r(b) = β−1 = 1.01 and both (46) and (47) are

satisfied. Another example is b = 0.17 and r(b) = 1.0183, which also satisfy (46) and (47).

We have shown the examples in which P ′ < 0 at B = BLF .

3It is easily confirmed that the parameters, p = 0.8, α = 0.8 and β = 0.99, and the uniform distribution

of R satisfy the condition (20).
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